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A Toeplitz sequence over the alphabet 𝒜 is an infinte word 𝜂 ∈ 𝒜ℕ (or 𝒜ℤ) such
that, for every n, there exists pn >0 such that 𝜂n =𝜂n+kpn, for all values of k.

Definition. (Toeplitz sequence)

Example: Period-doubling (or Feigenbaum) sequence:

0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 . . .

Black symbols appear with period 2, red symbols appear with period 4, blue sym-
bols appear with period 8, and so on.

Periodic sequences are always Toeplitz, but kind of “boring”.
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The p-periodic part of a sequence x is the set of all indices n where we observe the
symbols repeating with period p:

Perp(x)≔{n: xn = xn+kp for all values of k}.

Definition. (Skeleton)

A sequence 𝜂 is Toeplitz iff ⋃p⩾1 Perp(𝜂) contains all numbers.

An essential period for a Toeplitz sequence 𝜂 is a p such that Perp(𝜂)≠Perq(𝜂) for
all q< p. To each such 𝜂, we associate the strictly increasing sequence of essential
periods (pj)j⩾1, which satisfies pj ∣ pj+1 for all j; we also define q1 = p1,qj+1 = pj+1

pj
.

Definition. (Period sequence)
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Let ? be a symbol not in 𝒜. For each number p, define:

skelp(x)j ={{{{{{{{{{{{{{{{{{{{ xj if j∈ Perp(x),
? otherwise; skelpn(x) →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →

n→∞
x iff x is Toeplitz.

We are sequentially “building” x from an “empty” sequence S1(x) = ???????????. . .:
each skelpn(x) has some unfilled “gaps” that appear pn-periodically, and we fill some
(hopefully not all) empty cosets of pnℤ in skelpn(x) to create skelpn+1(x):

a ? a ? a ? a ? a ? a ? a ? a ? a ? a ? a ? a ? . . . p1 =2
a b a b a ? a b a b a ? a b a b a ? a b a b a ? . . . p2 =6
a b a b a c a b a b a ? a b a b a c a b a b a ? . . . p3 =12
a b a b a c a b a b a a a b a b a c a b a b a ? . . . p4 =24
a b a b a c a b a b a a a b a b a c a b a b a b . . . p5 =120
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A Toeplitz shift X𝜂 is the orbit closure Orb𝜎(𝜂) of a Toeplitz sequence 𝜂 under the
shift action ℕ↷

𝜎
𝒜ℕ (or ℤ↷

𝜎
𝒜ℤ) by translations.

Definition. (Toeplitz shift space)

Toeplitz shifts are always minimal: every point has a dense orbit. Thus, |X𝜂| = ∞
unless 𝜂 is a periodic point. Beyond this, Toeplitz shifts can vary a lot:

• they can be substitutive and thus have very low word complexity,

• but otherwise they may have any arbitrary entropy (and thus high complexity),

• they can have wildly different spectrums,

• they can have any configuration of invariant measures, and so on...
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A Toeplitz sequence 𝜂 (and hence, any x ∈X𝜂) can be thought of as an infinite con-
catenation of finitely many “chunks” of length pn (n-supertiles):

010001010100010001000101. . .
↗

010001010100010001000101. . . → 010001010100010001000101. . .
↘

010001010100010001000101. . .

To any x∈X𝜂, we associate a list of numbers 𝜋(x)=(sn)n⩾1, with 0⩽ sn < pn, where
sn indicates how “misplaced” the n-supertile closest to the origin is. As every (n+1)-
supertile is made out of n-supertiles, we must have sn+1 ≡ sn (mod pn).

𝜋(101010001000100. . .)=(1,1,5,5, . . . ).

If 𝜋(x)=𝜋(y), then skelpn(x)=skelpn(y) for all n.
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The (pn)n⩾1-adic group is the topological group:

ℤ(pn)n⩾1 ≔{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{(sn)n⩾1 ∈ �
j=1

∞
ℤ/ pjℤ: for all n, sn ≡ sn+1 (mod pn)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}},

with the prodiscrete topology. The action ℤ↷
𝜔

ℤ(pn)n⩾1 given by (sn)n⩾1 ↦(sn +1)n⩾1
produces an equicontinuous dynamical system, called a (pn)n⩾1-adic odometer.

Definition. (Odometer)

The map 𝜋:X𝜂 ↠ℤ(pn)n⩾1 (MEF) is a topological factor map, as it is surjective and:

𝜋(𝜎(x))=𝜋(x)+1=𝜔(𝜋(x)),

where we identify n∈ ℕ with the sequence (n,n,n,n, . . . ). Also, 𝜋(𝜂)=0.



Dynamical characterisation of Toeplitz words 8/16

The MEF 𝜋 allows us to recognise which elements of X𝜂 are Toeplitz:

A point x ∈X𝜂 is Toeplitz iff 𝜋−1[𝜋(x)] ={x}.
Theorem. (Williams)

In terms of the “coset-filling” procedure: if x is not Toeplitz, we will end up with one or more ? symbols
(“holes”) that are never filled, and thus there is more than one “legal” way to fill them, i.e. there are
different points with the same skeletons.

Conversely, we may characterise Toeplitz shifts via the MEF:

A minimal subshift X ⊂ 𝒜ℕ (or 𝒜ℤ) is Toeplitz iff there exists an odometer
ℤ↷

𝜔
ℤ(pn)n⩾1 and a factor map 𝜋: X ↠ℤ(pn)n⩾1 for which there exists some z∈ℤ(pn)n⩾1

with exactly one preimage.

Theorem. (Downarowicz)
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A Toeplitz sequence 𝜂 is said to be regular if:

d≔ lim
n→∞

dens(Perpn(𝜂))= lim
n→∞

#{0⩽ k< pn : 𝜂k =𝜂k+ pnm for all m}
pn

=1.

Definition. (Regularity)

A regular Toeplitz sequence is one where we fill the “gaps” with symbols quickly.
Example. For the sequence of periods (3n)n⩾1 we have that:
• filling one coset at a time results in an irregular sequence (d → 1

2 ):

0 1 2 0 3 4 0 5 6 0 1 7 0 8 9 0 ? ? 0 1 ? 0 ? ? 0 ? 2 0 1 . . .

• filling all but one available cosets at a time produces a regular sequence (d →1):

0 0 1 0 0 1 0 0 2 0 0 1 0 0 1 0 0 2 0 0 1 0 0 1 0 0 3 0 0 . . .
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Regularity has a dynamical interpretation: 𝜂 is regular iff “almost all” elements of
X𝜂 are Toeplitz sequences, and irregular if “almost none” is. Formally:

A Toeplitz sequence 𝜂 is regular iff the set {z ∈ ℤ(pn)n⩾1 : |𝜋−1[z]| = 1} has Haar
measure 1. Otherwise, this set has measure 0.

Theorem. (Regularity, dynamically)

Any shift-invariant measure in X𝜂 is heavily influenced by the Haar measure of the
odometer. Thus, in the regular case we get:

If 𝜂 is regular, X𝜂 is uniquely ergodic.
Theorem. (Jacobs–Keane)

In this scenario, X𝜂 has zero entropy, and thus low word complexity.
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A length-ℓ substitution is a monoid morphism 𝜃: 𝒜∗ → 𝒜∗ such that �𝜃(a)� = ℓ for
all a∈ 𝒜.

Definition. (Substitution)

Applying 𝜃 to a word w = w1 . . .wk ∈ 𝒜∗ replaces each symbol wj by the corres-
ponding word 𝜃(wj) and concatenates the results. By iteration we get a set of words
of increasing length, which may “converge” to an infinite word:

𝜃: 0 ↦ 0 1
1 ↦ 0 0 ↝ 0↦ 01↦ 0100↦ 01000101↦ ⋅ ⋅ ⋅ ↦ 01000101010001000100. . .

If 𝜃(a) starts with a fixed symbol for all a∈ 𝒜, this limit word will be Toeplitz.
Moreover, we may use a sequence of many different monoid morphisms (a 𝒮-adic sequence) with this
property to obtain a wide variety of Toeplitz words.
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This is a “standard” way to construct Toeplitz sequences from a period sequence
(pn)n⩾1 with p1⩾3,qi+1= pi+1

pi
⩾3. Given a non-constant sequence of symbols (aj)j⩾1:

1. we fill the cosets p1ℤ and p1ℤ − 1 with a1,
2. we proceed inductively: at step n + 1, each block [0, pn+1 − 1] is a concatenation

of qn+1 n-supertiles with unfilled gaps on the inside of each; we fill the inside of
the first and the last supertile with copies of the symbol an+1.

0 1 0 0 2 0 0 1 0 0 1 0 0 3 0 0 1 0 0 1 0 0 2 0 0 1 0 . . .

An Oxtoby sequence 𝜂 is regular iff ∑i=2
∞ 1

qi
diverges. If it is irregular, the subshift

X𝜂 is not uniquely ergodic; more precisely, the set of ergodic invariant measures is
in a 1-1 correspondence with the alphabet 𝒜.

Theorem. (Williams)
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This is a modified version of the Oxtoby construction where we fill the “gaps” with
all possible legal words from a shift space Y , in such a way so that, from an element
x∈Xη that is not Toeplitz, we can “extract” a unique point y∈Y . We will not go into
detail, but we note that:

• the Toeplitz sequence obtained from this construction will be irregular iff the
sum ∑k=1

∞ #ℒk(x)
qk+1

diverges. This will also ensure that, for any non-Toeplitz x∈X𝜂,
the set of “gaps” outside its skeleton will be unbounded above and below.

• Due to the way in which we insert the symbols in 𝜂, if we concatenate all symbols
outside of a non-Toeplitz x ∈X𝜂, we get a point y ∈ Y .

• In the irregular case almost all x ∈X𝜂 are non-Toeplitz. We can use this to get a
measurable isomorphism between X𝜂 and a skew product over ℤ(pn)n⩾1×Y . Hence,
X𝜂 “inherits” all ergodic measures from Y and has entropy (1− d)htop(Y).
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Beyond (bi-)infinite Toeplitz words, we may define Toeplitz configurations x ∈ 𝒜ℤd,
where for each n~ ∈ℤd there exist d linearly independent periods p~ (n~ ,1),..., p~ (n~ ,d) such
that xn~ = xn~+a1p~ (n~ ,1)+⋅ ⋅ ⋅+adp~ (n~ ,d), for all a1, . . . ,ad ∈ ℤ:

Similar generalisations exist for residually finite groups, where we ask ourselves the same questions,
together with new ones coming from geometry or group theory.
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• We have several parameters that are involved in the construction of a Toeplitz
sequence:

∘ the sequence of periods (pn)n⩾1 (or equivalently, the sequence (qn)n⩾1),

∘ which cosets of pnℤ are filled at each step,

∘ the actual list of symbols we use to fill the cosets.

If we know these parameters only partially, how much of 𝜂 can we reconstruct?

• If a number has as a Toeplitz sequence as its base 𝛽 expansion, what can we say
about it? (e.g. is it transcendent?)

• How do Toeplitz sequences relate to other sequences commonly studied in com-
binatorics and information theory (e.g. automatic or Sturmian sequences)?




