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Words, languages

A finite set of symbols, A = {0, 1, · · · , d− 1}, d ≥ 2, is called
an alphabet.

Given an alphabet A, an infinite word with symbols in A is an
element of AN or AZ,

x = x0x1x2x3 · · · , xi ∈ A.

A finite word with symbols in A is an element of
A? :=

⋃
n∈NAn.

For x = (xn)n∈N ∈ AN, a factor of x is a finite word
appearing in x,

w = xj · · ·xk, k ≥ j.

The length of w is k − j + 1 and is denoted |w|.
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Factor complexity

The language Lx of x is the set of all factors of x.

The factor complexity of x ∈ AN, is the map px : N→ N
given by

px(n) = |Lx ∩ An|

For instance, the complexity of

x = 010101010101010101 · · ·

satisfies px(0) = 1 (empty word) and px(n) = 2 for all n ≥ 1.
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Minimal complexity

Periodic sequences: if w ∈ A∗ is a non-empty and primitive
word, and

x = wwww · · · ,

then px(0) = 1, px(1) = |A| and px(n) = |w| for all n ≥ |w|.

Eventually periodic sequences: if w ∈ A∗ is a non-empty and
primitive finite word, and

x = twwww · · · ,

where t does not end with the same letter than w, then
px(n) = |tw| for each n ≥ |tw|.
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Maximal complexity

If |A| = d, then px(n) ≤ dn for any x ∈ AN, for any n ∈ N.

A? is countable. Let {w0, w1, w2, · · · } be an enumeration.

For instance, if A = {a, b},

A? = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, · · · }

Let x be the word obtained from the concatennation of the
w′is,

x = w0w1w2w3 · · ·

By construction, px(n) = dn.
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The Morse–Hedlund Theorem

The map px is non-decreasing: px(n) ≤ px(n+ 1).

Theorem [Hedlund–Morse ’40]: Let x be an infinite word on a
given alphabet, let px its factor complexity. Then, either x is
eventually periodic or px is strictly increasing.

Corollary: If there is an n ∈ N such that px(n) ≤ n, then x is
eventually periodic.

Question: ¿Are there infinite words which are not eventually
periodic and px(n) = n+ 1 for all n ∈ N?
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Sturmian words

Consider the following sequence of finite words (fi)i∈N in
A = {a, b},

fi =


a if i = 0

ab if i = 1

fi−1fi−2 if i > 1.

Since each fi is a prefix of fi+1, there exists a unique infinite
word xF such that each fi is a prefix of xF .

xF is called the Fibonacci infinite word,

xF = abaababaabaababaab · · ·

xF has complexity pxF (n) = n+ 1 for all n ∈ N.

Infinite words with complexity n+ 1 are known as Sturmian
words.
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Integer base expansion of a real number

Let 0 < α < 1 be a real number, let d ≥ 2 a positive integer.
Consider the base-d expansion of α,∑

n≥0

an
dn+1

= 0.a0a1a2 · · · , ai ∈ {0, 1, · · · , d− 1}.

To α we associate the infinite word

xα,d = a0a1a2a3 · · · ∈ {0, 1, · · · , d− 1}N.

Theorem: A real number 0 < α < 1 es rational if and only if
xα,d is eventually periodic.
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Complexity and transcendence

Theorem [Ferenczi–Maduit ’97]: If the binary expansion of α
satisfies pxα,2(n) = n+ 1 for all n ∈ N, then α is
transcendent.

Generalizations: for a d-letter alphabet, there are two ways of
generalize the notion of Sturmian word based on their
complexity,

px(n) = n+ d− 1,
px(n) = (d− 1)n+ 1.

Theorem [Ferenczi–Maduit ’97], [Risley–Zamboni ’00]: If for some
d ≥ 2, the base-d expansion of α satisfies
pxα,d(n) = n+ d− 1 for all n ∈ N, or pxα,d(n) = (d− 1)n+ 1
for all n ∈ N then α is transcendent.
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Dynamical systems

Dynamical system: Set with some structure and
structure-preserving group action on it.

Throughout this talk, G = Z.

Topological dynamical system: (X,T ), where X is a metric
space and T : X → X is a homeomorphism (defines a
continuous action of Z on X). ← Topological dynamics.

Measure-theoretic dynamical system: (X,T, µ), where X is a
measure space, T is a measure preserving bijection
µ(T−1A) = µ(A) ∀A ∈ B(X). ←Ergodic theory

Both: X is a metric space and µ is a measure defined on the
Borel σ−algebra BX , T is a measure preserving
homeomorphism.
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Orbit coding

Example: rotation on S1. Consider the rotation of angle
α ∈ R \Q on the unit circle, Rα : [0, 1)→ [0, 1),
Rα(x) = x+ α mod 1.

Consider the orbit coding sequence c(x) = (c(x)i)i∈Z
associated to x ∈ S1,

c(x)i =

{
0 if T i(x) ∈ [0, 1− α)
1 if T i(x) ∈ [1− α, 1)

x0
x1

x2

x3

w = 0010
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Subshifts

Let A = {0, 1, · · · , d− 1} be an alphabet, d ≥ 2.

Consider AZ = {(xn)n∈Z | xn ∈ A ∀n ∈ Z} ((bi-)infinite
words with symbols in A), equiped with the product topology
of the discrete topology on each copy of A.

Let S : AZ → AZ be the shift map:
S((xn)n∈Z) = (xn+1)n∈Z.

If X ⊆ AZ is closed and shift-invariant (S(X) = X),
(X,S |X) is a topological dynamical system called shift or
subshift on A.

The whole system (AZ, S) is called fullshift on A.
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Complexity and Entropy

Let (X,S) be a subshift on the alphabet A. Let LX be the
set of all factor appearing on all elements of X.

The factor complexity of X is the map pX : N→ N given by

pX(n) = |LX ∩ An|.

We consider minimal symbolic systems: every orbit is dense.

Equivalently, the language LX is uniformly recurrent: every
factor appearing in any element x ∈ X, appears infinitely
often and with bounded gaps.

In minimal systems, Lx = LX for all x ∈ X.
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Complexity and Entropy

The topological entropy of a symbolic system corresponds to
the limit limn→∞

log(pX(n))
n .

Factor complexity is a finer notion of randomness.

Among zero topological entropy there is a wide variety of
different complexity behaviors.
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Complexity and Conjugacy

Two topological dynamical systems (X1, T1) and (X2, T2) are
conjugate if there exists a homeomorphism h : X1 → X2 such
that

h ◦ T1 = T2 ◦ h
The factor complexity pX is not preserved under conjugacy.

However, if (X,S) and (Y, S) are conjugate subshifts, then
∃C such that, ∀n > C

pX(n− C) ≤ pY (n) ≤ pX(n+ C) [Ferenczi ’96].

In particular, the asymptotic behavior is the same.

The behavior of the factor complexity function imposes a
restriction on the conjugacy class of a given symbolic system.
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Invariant measures

Let (X,T ) be a topological dynamical system. A Borel
probability measure µ on X is T -invariant if

∀A ∈ BX , µ(T−1A) = µ(A).

An invariant measure is called ergodic if ∀A ∈ BX ,
T−1A = A =⇒ µ(A) = 0 ∨ µ(A) = 1.

Let M(X,T ) denote the set of all invariant probability
measures on X. It has a simplex structure, whose extreme
points are the ergodic measures of the system.

If |M(X,T )| = 1, the system is said to be uniquely ergodic.
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Invariant measures

Let (X,S) be a minimal subshift, let pX be its complexity

function. If lim infn→∞
pX(n)
n < α < +∞, then the number

of extreme points of M(X,S) is at most max(bαc, 1)
[Boshernitzan ’84].

If lim supn→∞
pX(n)
n < 3, then (X,S) is uniquely ergodic

[Boshernitzan ’84]

The behaviour of the factor complexity function imposes a
restriction on the number of ergodic measures of a minimal
symbolic system.

The Boshernitzan condition is optimal.
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Invariant measures

Theorem [Cyr–Kra ’20]: If pn is any sequence of natural
numbers such that lim infn→∞

pn
n =∞, then there exists a

minimal subshift (X,S) such that M(X,S) has uncountably
many extreme points, and which satisfies

lim inf
n→∞

pX(n)

pn
= 0.
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Invariant measures

Theorem [CB-Donoso ’22]: If pn is any sequence of natural
numbers such that lim infn→∞

pn
n =∞ and K is any Choquet

simplex, then there exists a minimal subshift (Y, S) such that

M(Y, S) ∼= K,
The factor complexity of (Y, S) satisfies lim pY (n)/pn = 0.

Theorem [CB-Donoso ’24]: Let K be a Choquet simplex. Let
(gn)n∈N be a sequence of positive real numbers which is
subexponential. Then, there exists a zero-entropy minimal
subshift (Y, S) such that

M(Y, S) ∼= K,
The factor complexity of (Y, S) satisfies lim inf gn/pX(n) = 0.
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Invariant measures and Entropy

Theorem [CB-Donoso ’24]: Let K be a Choquet simplex and
α ≥ 1 be given. Let (gn)n∈N be a sequence of positive real

numbers satisfying lim log(gn)
n = log(α). Then, there exists a

minimal subshift (X,S) such that

M(X,S) ∼= K.
h(X,S) = log(α).
The complexity of (X,S) satisfies lim inf gn/pX(n) = 0.
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Questions

Let K be a Choquet simplex and let (pn)n∈N (gn)n∈N be
sequences of positive real numbers satisfying
lim log(gn)

n = log(α).
Is there a minimal subshift (X,S) such that

M(X,S) ∼= K.
h(X,S) = log(α).
The complexity of (X,S) satisfies lim inf pX(n)/pn = 0 ???
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Questions

Let K be a Choquet simplex, let (pn)n∈N and (gn)n∈N two
sequences of real numbers such that pn is superlinear, gn is at
most exponential, and limn→∞

gn
pn

= 0.

Is there a minimal subshift (X,S) such that

M(X,S) ∼= K.
The complexity of (X,S) satisfies

limn→∞
gn

pX(n) = limn→∞
pX(n)
pn

= 0 ???
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GRACIAS!
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