Factor complexity and Symbolic dynamics

Paulina Cecchi Bernales.

Departamento de Matemáticas-Facultad de Ciencias-Universidad de Chile.

EPAA Kickoff meeting, UBA

Buenos Aires, October 22, 2024.

Definition and examples The Morse–Hedlund Theorem

Words, languages

- A finite set of symbols, $\mathcal{A} = \{0, 1, \cdots, d-1\}$, $d \ge 2$, is called an alphabet.
- Given an alphabet \mathcal{A} , an infinite word with symbols in \mathcal{A} is an element of $\mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$,

$$x = x_0 x_1 x_2 x_3 \cdots, \quad x_i \in \mathcal{A}.$$

- A finite word with symbols in \mathcal{A} is an element of $\mathcal{A}^{\star} := \bigcup_{n \in \mathbb{N}} \mathcal{A}^{n}$.
- For $x = (x_n)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$, a factor of x is a finite word appearing in x,

$$w = x_j \cdots x_k, \quad k \ge j.$$

• The length of w is k - j + 1 and is denoted |w|.

Factor complexity

Transcendence Symbolic dynamics Complexity of a symbolic system Definition and examples The Morse-Hedlund Theorem

Factor complexity

- The language \mathcal{L}_x of x is the set of all factors of x.
- The factor complexity of $x\in \mathcal{A}^{\mathbb{N}},$ is the map $p_{x}:\mathbb{N}\to\mathbb{N}$ given by

$$p_x(n) = |\mathcal{L}_x \cap \mathcal{A}^n|$$

• For instance, the complexity of

 $x = 010101010101010101 \cdots$

satisfies $p_x(0) = 1$ (empty word) and $p_x(n) = 2$ for all $n \ge 1$.

Definition and examples The Morse–Hedlund Theorem

Minimal complexity

• Periodic sequences: if $w \in \mathcal{A}^*$ is a non-empty and primitive word, and

 $x = wwww \cdots$,

then $p_x(0) = 1$, $p_x(1) = |\mathcal{A}|$ and $p_x(n) = |w|$ for all $n \ge |w|$.

 Eventually periodic sequences: if w ∈ A* is a non-empty and primitive finite word, and

 $x = twwww\cdots,$

where t does not end with the same letter than w, then $p_x(n) = |tw|$ for each $n \ge |tw|$.

Definition and examples The Morse–Hedlund Theorem

Maximal complexity

- If $|\mathcal{A}| = d$, then $p_x(n) \leq d^n$ for any $x \in \mathcal{A}^{\mathbb{N}}$, for any $n \in \mathbb{N}$.
- \mathcal{A}^{\star} is countable. Let $\{w_0, w_1, w_2, \cdots\}$ be an enumeration.
- For instance, if $\mathcal{A} = \{a, b\}$,

 $\mathcal{A}^{\star} = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, \cdots \}$

• Let \boldsymbol{x} be the word obtained from the concatennation of the $\boldsymbol{w}_i'\boldsymbol{s}$,

 $x = w_0 w_1 w_2 w_3 \cdots$

• By construction, $p_x(n) = d^n$.

Definition and examples The Morse-Hedlund Theorem

The Morse-Hedlund Theorem

- The map p_x is non-decreasing: $p_x(n) \le p_x(n+1)$.
- **Theorem** [Hedlund-Morse '40]: Let x be an infinite word on a given alphabet, let p_x its factor complexity. Then, either x is eventually periodic or p_x is strictly increasing.
- Corollary: If there is an $n \in \mathbb{N}$ such that $p_x(n) \leq n$, then x is eventually periodic.
- Question: ¿Are there infinite words which are not eventually periodic and $p_x(n) = n + 1$ for all $n \in \mathbb{N}$?

Definition and examples The Morse-Hedlund Theorem

Sturmian words

• Consider the following sequence of finite words $(f_i)_{i\in\mathbb{N}}$ in $\mathcal{A}=\{a,b\},$

$$f_i = \begin{cases} a & \text{if } i = 0\\ ab & \text{if } i = 1\\ f_{i-1}f_{i-2} & \text{if } i > 1. \end{cases}$$

- Since each f_i is a *prefix* of f_{i+1} , there exists a unique infinite word x_F such that each f_i is a prefix of x_F .
- x_F is called the Fibonacci infinite word,

 $x_F = abaabaabaabaabaabaabaab \cdots$

- x_F has complexity $p_{x_F}(n) = n + 1$ for all $n \in \mathbb{N}$.
- Infinite words with complexity n + 1 are known as *Sturmian words*.

Integer base expansions Complexity and transcendence

Integer base expansion of a real number

• Let $0 < \alpha < 1$ be a real number, let $d \ge 2$ a positive integer. Consider the base-d expansion of α ,

$$\sum_{n\geq 0} \frac{a_n}{d^{n+1}} = 0.a_0 a_1 a_2 \cdots, \quad a_i \in \{0, 1, \cdots, d-1\}.$$

 $\bullet\,$ To α we associate the infinite word

$$x_{\alpha,d} = a_0 a_1 a_2 a_3 \dots \in \{0, 1, \dots, d-1\}^{\mathbb{N}}.$$

• **Theorem**: A real number $0 < \alpha < 1$ es rational if and only if $x_{\alpha,d}$ is eventually periodic.

Integer base expansions Complexity and transcendence

Complexity and transcendence

- **Theorem** [Ferenczi-Maduit '97]: If the binary expansion of α satisfies $p_{x_{\alpha,2}}(n) = n + 1$ for all $n \in \mathbb{N}$, then α is transcendent.
- Generalizations: for a *d*-letter alphabet, there are two ways of generalize the notion of *Sturmian word* based on their complexity,

$$p_x(n) = n + d - 1,$$

- $p_x(n) = (d-1)n + 1.$
- Theorem [Ferenczi-Maduit '97], [Risley-Zamboni '00]: If for some $d \geq 2$, the base-d expansion of α satisfies $p_{x_{\alpha,d}}(n) = n + d 1$ for all $n \in \mathbb{N}$, or $p_{x_{\alpha,d}}(n) = (d-1)n + 1$ for all $n \in \mathbb{N}$ then α is transcendent.

Dynamical systems Orbit coding

Dynamical systems

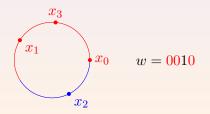
- **Dynamical system**: Set with some structure and structure-preserving group action on it.
- Throughout this talk, $G = \mathbb{Z}$.
- Topological dynamical system: (X, T), where X is a metric space and T : X → X is a homeomorphism (defines a continuous action of Z on X). ← Topological dynamics.
- Measure-theoretic dynamical system: (X, T, μ) , where X is a measure space, T is a measure preserving bijection $\mu(T^{-1}A) = \mu(A) \quad \forall A \in \mathcal{B}(X). \leftarrow \text{Ergodic theory}$
- Both: X is a metric space and μ is a measure defined on the Borel σ-algebra B_X, T is a measure preserving homeomorphism.

Dynamical systems Orbit coding

Orbit coding

- Example: rotation on \mathbb{S}^1 . Consider the rotation of angle $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ on the unit circle, $R_\alpha : [0,1) \to [0,1)$, $R_\alpha(x) = x + \alpha \mod 1$.
- Consider the orbit coding sequence $c(x) = (c(x)_i)_{i \in \mathbb{Z}}$ associated to $x \in \mathbb{S}^1$,

$$c(x)_i = \begin{cases} 0 & \text{if } T^i(x) \in [0, 1 - \alpha) \\ 1 & \text{if } T^i(x) \in [1 - \alpha, 1) \end{cases}$$



Dynamical systems Orbit coding

Subshifts

- Let $\mathcal{A} = \{0, 1, \cdots, d-1\}$ be an alphabet, $d \geq 2$.
- Consider A^ℤ = {(x_n)_{n∈ℤ} | x_n ∈ A ∀n ∈ ℤ} ((bi-)infinite words with symbols in A), equiped with the product topology of the discrete topology on each copy of A.
- Let $S: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ be the shift map: $S((x_n)_{n \in \mathbb{Z}}) = (x_{n+1})_{n \in \mathbb{Z}}.$
- If X ⊆ A^ℤ is closed and shift-invariant (S(X) = X), (X, S |_X) is a topological dynamical system called shift or subshift on A.
- The whole system $(\mathcal{A}^{\mathbb{Z}}, S)$ is called fullshift on \mathcal{A} .

Definitions Definitions Conjugacy Invariant measures

Complexity and Entropy

- Let (X, S) be a subshift on the alphabet \mathcal{A} . Let \mathcal{L}_X be the set of all factor appearing on all elements of X.
- The factor complexity of X is the map $p_X:\mathbb{N}\to\mathbb{N}$ given by

$$p_X(n) = |\mathcal{L}_X \cap \mathcal{A}^n|.$$

- We consider minimal symbolic systems: every orbit is dense.
- Equivalently, the language \mathcal{L}_X is uniformly recurrent: every factor appearing in any element $x \in X$, appears infinitely often and with bounded gaps.
- In minimal systems, $\mathcal{L}_x = \mathcal{L}_X$ for all $x \in X$.

Definitions Definitions Conjugacy Invariant measures

Complexity and Entropy

- The topological entropy of a symbolic system corresponds to the limit $\lim_{n\to\infty} \frac{\log(p_X(n))}{n}$.
- Factor complexity is a finer notion of randomness.
- Among zero topological entropy there is a wide variety of different complexity behaviors.

Definitions Definitions **Conjugacy** Invariant measures

Complexity and Conjugacy

• Two topological dynamical systems (X_1,T_1) and (X_2,T_2) are conjugate if there exists a homeomorphism $h:X_1\to X_2$ such that

$$h \circ T_1 = T_2 \circ h$$

- The factor complexity p_X is not preserved under conjugacy.
- However, if (X,S) and (Y,S) are conjugate subshifts, then $\exists C$ such that, $\forall n>C$

$$p_X(n-C) \le p_Y(n) \le p_X(n+C)$$
 [Ferenczi '96].

- In particular, the asymptotic behavior is the same.
- The behavior of the factor complexity function imposes a restriction on the conjugacy class of a given symbolic system.

Definitions Definitions Conjugacy Invariant measures

Invariant measures

• Let (X,T) be a topological dynamical system. A Borel probability measure μ on X is T-invariant if

$$\forall A \in \mathcal{B}_X, \mu(T^{-1}A) = \mu(A).$$

- An invariant measure is called ergodic if $\forall A \in \mathcal{B}_X$, $T^{-1}A = A \implies \mu(A) = 0 \lor \mu(A) = 1.$
- Let $\mathcal{M}(X,T)$ denote the set of all invariant probability measures on X. It has a simplex structure, whose extreme points are the ergodic measures of the system.
- If $|\mathcal{M}(X,T)| = 1$, the system is said to be uniquely ergodic.

Definitions Definitions Conjugacy Invariant measures

Invariant measures

- Let (X, S) be a minimal subshift, let p_X be its complexity function. If $\liminf_{n\to\infty} \frac{p_X(n)}{n} < \alpha < +\infty$, then the number of extreme points of $\mathcal{M}(X, S)$ is at most $\max(\lfloor \alpha \rfloor, 1)$ [Boshernitzan '84].
- If $\limsup_{n\to\infty}\frac{p_X(n)}{n}<3,$ then (X,S) is uniquely ergodic [Boshernitzan '84]
- The behaviour of the factor complexity function imposes a restriction on the number of ergodic measures of a minimal symbolic system.
- The Boshernitzan condition is optimal.

Definitions Definitions Conjugacy Invariant measures

Invariant measures

• Theorem [Cyr-Kra '20]: If p_n is any sequence of natural numbers such that $\liminf_{n\to\infty} \frac{p_n}{n} = \infty$, then there exists a minimal subshift (X,S) such that $\mathcal{M}(X,S)$ has uncountably many extreme points, and which satisfies

$$\liminf_{n \to \infty} \frac{p_X(n)}{p_n} = 0.$$

Definitions Definitions Conjugacy Invariant measures

Invariant measures

- **Theorem** [CB-Donoso '22]: If p_n is any sequence of natural numbers such that $\liminf_{n\to\infty} \frac{p_n}{n} = \infty$ and K is any Choquet simplex, then there exists a minimal subshift (Y, S) such that
 - $\mathcal{M}(Y,S) \cong K$,
 - The factor complexity of (Y, S) satisfies $\lim p_Y(n)/p_n = 0$.
- **Theorem** [CB-Donoso '24]: Let K be a Choquet simplex. Let $(g_n)_{n\in\mathbb{N}}$ be a sequence of positive real numbers which is subexponential. Then, there exists a zero-entropy minimal subshift (Y, S) such that
 - $\mathcal{M}(Y,S) \cong K$,
 - The factor complexity of (Y, S) satisfies $\liminf g_n/p_X(n) = 0$.

Definitions Definitions Conjugacy Invariant measures

Invariant measures and Entropy

• **Theorem** [CB-Donoso '24]: Let K be a Choquet simplex and $\alpha \geq 1$ be given. Let $(g_n)_{n\in\mathbb{N}}$ be a sequence of positive real numbers satisfying $\lim \frac{\log(g_n)}{n} = \log(\alpha)$. Then, there exists a minimal subshift (X, S) such that

•
$$\mathcal{M}(X,S) \cong K.$$

•
$$h(X,S) = \log(\alpha)$$
.

• The complexity of (X, S) satisfies $\liminf g_n/p_X(n) = 0$.

Definitions Definitions Conjugacy Invariant measures

Questions

Let K be a Choquet simplex and let (p_n)_{n∈ℕ} (g_n)_{n∈ℕ} be sequences of positive real numbers satisfying lim log(g_n)/n = log(α). Is there a minimal subshift (X, S) such that

•
$$\mathcal{M}(X,S) \cong K.$$

•
$$h(X,S) = \log(\alpha)$$
.

• The complexity of (X, S) satisfies $\liminf p_X(n)/p_n = 0$???

Definitions Definitions Conjugacy Invariant measures

Questions

Let K be a Choquet simplex, let (p_n)_{n∈N} and (g_n)_{n∈N} two sequences of real numbers such that p_n is superlinear, g_n is at most exponential, and lim_{n→∞} g_n/p_n = 0. Is there a minimal subshift (X, S) such that

•
$$\mathcal{M}(X,S) \cong K.$$

• The complexity of (X, S) satisfies $\lim_{n \to \infty} \frac{g_n}{p_X(n)} = \lim_{n \to \infty} \frac{p_X(n)}{p_n} = 0$??? Factor complexity Definitions Transcendence Definitions Symbolic dynamics Conjugacy Complexity of a symbolic system

GRACIAS!

Paulina CECCHI BERNALES Factor complexity and dynamics