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LIGM, Université Gustave Eiffel

Based on joint work with
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Example: first digit d in base 3 of x ∈ [0, 1) from binary x = (0.b1b2 . . .)2 ?

[0, 1]

[0,
1
4 ]

d=0

0

. . .
. . .

[14 ,
3
8 ]

0

[
3
8 ,

1
2 ]

d=1

1

[14 ,
1
2 ]

1

[0, 12 ]

0

[
1
2 ,

5
8 ]

d=1

0

. . .
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[58 ,
3
4 ]

1

[12 ,
3
4 ]

0

[
3
4 ,1]

d=2

1

[12 , 1]

1

⇒ Only intervals containing 1
3
and 2

3
remain.

Expected cost

E[C] =
∑
k≥0

Pr(C > k) = 1 +
∑
k≥1

2

2k
= 3 bits .
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Change of basis: binary to d-ary
▶ Given n binary digits b1, b2, . . . , bn ∈ {0, 1} of

x = (0.b1b2 . . .)2 ∈ [0, 1] .

▶ Number L = Ln(x) of d-ary digits 0 ≤ d1, . . . , dL < d deduced?

x = (0.d1d2 . . .)d ∈ [0, 1] .

Answer:

▶ For d = 2A we simply obtain

Ln(x) = n/A ,

because 1 d-ary digit corresponds to A binary digits.

▶ More generally we expect *

(log d)× Ln(x) ∼ (log 2)× n .

One digit in base dL “corresponds” to one in base 2n if dL ≈ 2n.

*This will be true!
2 / 25
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Motivation: simulating Sturmian words
Sturmian words. discrete coding of lines: horizontal (0), vertical (1) steps

0 0 1 0 0 1 0 1 0 0

Theorem (Morse, Hedlund ’40)

Binary sequence (uk) is Sturmian iff there is an irrational α ∈ (0, 1) and
β ∈ [0, 1) such that for all k ≥ 0,

uk = ⌊(k + 1)α+ β⌋ − ⌊kα+ β⌋ .

The irrational α is known as the slope.

Remark The parameters α ∈ [0, 1) \Q and β ∈ [0, 1) are unique !
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Question. if we have approximation of α, and β = 0�, how many
Sturm digits (uk) of α are deduced?

0 0 1 0 0 1 0 1 0 0

This is naturally the case in computer simulations!

Remark. First difference: one line above (a, b) ∈ Z2 while other below:

=⇒ rational a/b ∈ [α2, α1] implies u
⟨α2⟩
b−1 = 0, u

⟨α1⟩
b−1 = 1.

�This is known as the characteristic Sturmian word of slope α.
4 / 25
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Plan of the talk

1. Unidimensional partitions of positive entropy

2. Undimensional partitions with zero entropy

3. Farey partition: zero entropy partitions for Sturmian digits

4. Bidimensional partitions

5. Conclusions and other work
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First historical results: Lochs’ Theorem
▶ Given n decimal digits d1, d2, . . . , dn of x ∈ [0, 1],

x = (0.d1d2 . . .)10 ∈ [0, 1] .

▶ Number Ln(x) of CFE-digits (partial quotients) deduced without
error ?

x =
1

a1 +
1

a2 +
. . .

.

Theorem (Lochs ’64)

The rate of CF-digits per decimal given satisfies

lim
d→∞

Ln(x)

n
=

6 log 2 log 10

π2

.
= 0.9702701 . . . ,

for almost every x.

“Example”. The first 1000 decimals of π determine exactly 968 partial

quotients of π.

6 / 25
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Systems of partitions: a model for numeration

Example: decimal expansion

Associated partitions D = (Dn) for the decimal expansion:

Dn = {
(

k
10n ,

k+1
10n

)
: k ∈ {0, 1, . . . , 10n − 1}} .

Intervals determine expansion up to depth n:

x ∈
(
(0.d1 . . . dn)10, (0.d1 . . . dn)10 + 10−n

)
,

implies that expansion is x = (0.d1d2 . . . dncn+1cn+2 . . .)10.

Definition (System of interval partitions)

Sequence of (open) interval partitions P = (Pn) of [0, 1]

▶ Pn+1 refinement of Pn for every n.

▶ ∥Pn∥ = sup{diam(I) : I ∈ Pn} tends to 0.

Model for numeration systems: more generally,

▶ notation IPn (x) = I ∈ Pn such that x ∈ I,

▶ first n symbols for x determine IPn (x) and conversely.

7 / 25
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Entropy of a partition

Entropy dictates size of intervals

▶ Shannon entropy�:

H(P) = − lim
k→∞

1

k

∑
I∈Pk

|I| log |I| .

▶ Point-wise entropy: for almost every x

h(P) = − lim
k→∞

1

k
log

∣∣IPk (x)
∣∣ .

Connection: if both are defined...

H(P) = − lim
k→∞

E
[1
k
log

∣∣IPk (x)
∣∣ ] , h(P) = −E

[
lim
k→∞

1

k
log

∣∣IPk (x)
∣∣ ] .

Remark. By Fatou’s Lemma h(P) ≤ H(P) if both exist.

�We consider Lebesgue measure here, but any Borel λ works.
8 / 25



Entropy of a partition

Entropy dictates size of intervals

▶ Shannon entropy�:

H(P) = − lim
k→∞

1

k

∑
I∈Pk

|I| log |I| .

▶ Point-wise entropy: for almost every x

h(P) = − lim
k→∞

1

k
log

∣∣IPk (x)
∣∣ .

Connection: if both are defined...

H(P) = − lim
k→∞

E
[1
k
log

∣∣IPk (x)
∣∣ ] , h(P) = −E

[
lim
k→∞

1

k
log

∣∣IPk (x)
∣∣ ] .

Remark. By Fatou’s Lemma h(P) ≤ H(P) if both exist.

�We consider Lebesgue measure here, but any Borel λ works.
8 / 25



Entropy of a partition

Entropy dictates size of intervals

▶ Shannon entropy�:

H(P) = − lim
k→∞

1

k

∑
I∈Pk

|I| log |I| .

▶ Point-wise entropy: for almost every x

h(P) = − lim
k→∞

1

k
log

∣∣IPk (x)
∣∣ .

Connection: if both are defined...

H(P) = − lim
k→∞

E
[1
k
log

∣∣IPk (x)
∣∣ ] , h(P) = −E

[
lim
k→∞

1

k
log

∣∣IPk (x)
∣∣ ] .

Remark. By Fatou’s Lemma h(P) ≤ H(P) if both exist.

�We consider Lebesgue measure here, but any Borel λ works.
8 / 25



Existence of point-wise entropy

Systems of partitions associated with good (positive entropy) dynamical

systems have point-wise entropy:

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a
probability space (Ω,B, µ) and let P be a finite or countable
generating partition for T for which Hµ(P ) < ∞. Then for µ-a.e.
x,

lim
n→∞

− logµ (Pn(x))

n
= hµ(T ) .

Here Hµ(P ) denotes the entropy of the partition P , hµ(T ) the
entropy of T and Pn(x) denotes the element of the partition∨n−1

i=0 T−iP containing x.

9 / 25



Generalization Lochs’: Lochs’ index

The Lochs’ index

▶ formalizes the notation of deduced digits,

▶ generalizes it to systems of interval partitions.

Lochs’ index for systems of partitions P1,P2

Ln(x;P1,P2) := sup{m ≥ 0 : IP
1

n (x) ⊂ IP
2

m (x)} ,

depth in P2 deduced from depth n in P1.

Explanation

If IP
1

n (x) splits over (intersects) several J ∈ P2
m,

=⇒ we cannot yet decide on IP
2

m (x)

10 / 25
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Unidimensional partitions of positive entropy

Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions P1 and P2, with positive point-wise
entropies h(P1) and h(P2). Then

lim
n→∞

1

n
Ln(x;P1,P2) =

h(P1)

h(P2)

for a.e. x.

We deduce Lochs’ Theorem and result for d-ary basis:

▶ Base d. Since |IDn (x)| = d−n, h(D) = log d.

▶ Continued fractions. Entropy h(C) = π2

6 log 2

11 / 25
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for a.e. x.

What if h(P1) = 0 or h(P2) = 0 ? e.g., Sturm digits (uk)

– If h(P2) = 0 and h(P1) > 0, almost surely L/t → ∞.

– If h(P2) > 0 and h(P1) = 0, almost surely L/t → 0.

In our work [BCRS’23] we generalize this result to zero entropy...
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Log-balancedness and weight function

Definition (Weight function)

A system of partitions P = (Pn) is log-balanced a.e. (resp. in
measure) with weight function f : N → R>0, f(n) → ∞, if

− log |IPn (x)| ∼ f(n) ,

almost everywhere (resp. in measure).

Example

▶ For positive entropy h = h(P) > 0

f(n) = h× n .

▶ If partition is log-balanced, entropy 0 corresponds to

f(n) = o(n) .

13 / 25
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Result for zero entropy

Theorem (Berthé,Cesaratto,R.,Safe, 2023)

Consider systems of partitions P1 and P2, with a.e. weight
functions f1 and f2. Then, under certain technical conditions

lim
n→∞

f2
(
Ln(x;P1,P2)

)
f1(n)

= 1 ,

for a.e. x.

The conditions are:

▶
∑

e−δf1(n) < ∞ for every δ > 0;

▶ f2 is non decreasing ;

▶ f2(n+ 1)− f2(n) = o(f2(n)) as n → ∞.

14 / 25
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Discussion: conditions of our main result
We recall the conditions:

(a)
∑

e−δf1(n) < ∞ for every δ > 0;

(b) f2 is non decreasing ;

(c) f2(n+ 1)− f2(n) = o(f2(n)) as n → ∞.

Intuitively, the first condition is the most constraining one:

▶ Condition (b) reflects the fact that P2 is refining ;

▶ Condition (c) means that f2(n+ 1) ∼ f2(n) ;

▶ Condition (a) tells us that f1(n) grows not too slowly

Examples

– Condition (a) not satisfied when f1(n) = log n,
– Condition (a) satisfied for f1(n) ≥ (log n)2.
– Condition (c) not satisfied when f2(n) = exp(n),

– Condition (c) is satisfied when f2(n) = exp(
√
n).
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Discussion: conditions of our result for zero entropy

Example: appropriate output partitions P2

Subexponential weight functions of the form

f2(n) = exp(g(n)) ,

with g′(t) ↘ 0.

Example: appropriate input partitions P1

Superlogarithmic weight functions

f1(n) = (log n) · g(n) ,

with g(t) → ∞.
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A zero entropy system for Sturmian digits

Farey partition (Sturm source) is built by splitting intervals at
mediant

mediant(a/b, c/d) := (a+ b)/(c+ d) .

Construction of the Farey partition Fn:

▶ Base case: F0 = {[0, 1]}.
▶ Building Fn: split

[
a
b ,

c
d

]
∈ Fn−1 at mediant a+c

b+d , if b+ d ≤ n+ 1.

F0 : 0/1 1/1

F1 : 1/2

F2 : 1/3 2/3

F3 : 1/4 3/4

F4 : 1/5 2/5 3/5 4/5
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Farey partition: natural zero entropy system with weight

Farey partition Fn:

▶ Base case: F0 = {[0, 1]}.
▶ Building Fn: split

[
a
b ,

c
d

]
∈ Fn−1 at mediant a+c

b+d ,if b+ d ≤ n+ 1.

F0 : 0/1 1/1

F1 : 1/2

F2 : 1/3 2/3

F3 : 1/4 3/4

F4 : 1/5 2/5 3/5 4/5

Properties:

▶ Fk determines§ char. Sturmian word up to uk: prefix u0 . . . uk.

▶ The end-points Fk are exactly {a
b ∈ Q : 0 ≤ a ≤ b ≤ k + 1}.

▶ Small number: Θ(k2) intervals in Fk

⇒ Shannon entropy 0.

§We are forcing a slope α ∈ (0, 1), i.e., u0 = 0 always as β = 0.
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Weight of the Farey partition

Proposition

Farey partition is log-balanced a.e. with weight-function f(n) = 2 log n.

Farey intervals have comparable size almost everywhere:

Lemma

For almost every x, for large n ≥ n0(x)

1

n2
≤

∣∣IFn (x)
∣∣ ≤ (log n)(log log n)

n2

0.01 0.02 0.03 0.04 0.05
0
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20
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80

Figure. Histogram of
interval sizes for n = 20.
1

202 = 0.0025, 1
20 = 0.05.
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Consequences: producing digits of Sturmian word
From n digits of the slope α, we deduce exponentially many:

Corollary: from binary to Farey

Let F be the Farey partition, then

logLn(x;B,F) ∼ log 2

2
× n ,

almost everywhere.

Proof.

For the input f1(n) = (log 2)× n, for the output f2(m) = 2 logm.

Corollary

Let P with h(P) > 0 and F be the Farey partition, then

logLn(x;P,F) ∼ h(P)

2
× n ,

almost everywhere.
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Two dimensions: joint coding of a pair

▶ Previous results apply to sequences of one-dimensional partitions,
these encode x ∈ [0, 1]

▶ In two dimensions we encode a pair (x, y) ∈ [0, 1]× [0, 1].
=⇒ need not treat x and y independently !

Theorem (Dajani, De Vries, Johnson 2005)

Consider systems of partitions P1 and P2 of the square [0, 1]2 satisfying

(i) P1 is made out of squares.

(ii) P2 consisting of convex polygons, of pointwise entropy h(P2) > 0.

(iii) There are constants β, c0, c1 > 0 so that, for every I from a

partition in P2, c0λ(I) ≤ (diam(I))
β ≤ c1λ(I) .

Then, for a.e. (x, y) ∈ [0, 1]2,

lim
n→∞

1

n
Ln(x, y;P1,P2) =

β

2(β − 1)

h(P1)

h(P2)
.

21 / 25



Two dimensions: joint coding of a pair

▶ Previous results apply to sequences of one-dimensional partitions,
these encode x ∈ [0, 1]

▶ In two dimensions we encode a pair (x, y) ∈ [0, 1]× [0, 1].
=⇒ need not treat x and y independently !

Theorem (Dajani, De Vries, Johnson 2005)

Consider systems of partitions P1 and P2 of the square [0, 1]2 satisfying

(i) P1 is made out of squares.

(ii) P2 consisting of convex polygons, of pointwise entropy h(P2) > 0.

(iii) There are constants β, c0, c1 > 0 so that, for every I from a

partition in P2, c0λ(I) ≤ (diam(I))
β ≤ c1λ(I) .

Then, for a.e. (x, y) ∈ [0, 1]2,

lim
n→∞

1

n
Ln(x, y;P1,P2) =

β

2(β − 1)

h(P1)

h(P2)
.

21 / 25



Two dimensions: joint coding of a pair

▶ Previous results apply to sequences of one-dimensional partitions,
these encode x ∈ [0, 1]

▶ In two dimensions we encode a pair (x, y) ∈ [0, 1]× [0, 1].
=⇒ need not treat x and y independently !

Theorem (Dajani, De Vries, Johnson 2005)

Consider systems of partitions P1 and P2 of the square [0, 1]2 satisfying

(i) P1 is made out of squares.

(ii) P2 consisting of convex polygons, of pointwise entropy h(P2) > 0.

(iii) There are constants β, c0, c1 > 0 so that, for every I from a

partition in P2, c0λ(I) ≤ (diam(I))
β ≤ c1λ(I) .

Then, for a.e. (x, y) ∈ [0, 1]2,

lim
n→∞

1

n
Ln(x, y;P1,P2) =

β

2(β − 1)

h(P1)

h(P2)
.

21 / 25



Two dimensions: joint coding of a pair

Theorem (Dajani, De Vries, Johnson 2005)

Consider systems of partitions P1 and P2 of the square [0, 1]2 satisfying

(i) P1 is made out of squares.
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1

n
Ln(x, y;P1,P2) =

β

2(β − 1)

h(P1)

h(P2)
.

... what about non-squares ? ... what about non-polygons ?

Work in progress [BCRS]

Under suitable balance conditions we can go from P1 to a partition P2

made out of squares. =⇒ Log-balanced measures and diameters.
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Example of interest: Ostrowski expansion

Ostrowski transformation

Given irrationals x, y ∈ [0, 1] define

S(x, y) = ({1/x} , {y/x}) ,

where {t} := t− ⌊t⌋ is the fractional part.

Digits are produced at each iteration i ≥ 1 by (xi, yi)

ai = ⌊1/xi⌋ , bi = ⌊yi/xi⌋ .

We retrieve (x, y) by

x =
1

a1 +
1

a2 +
. . .

, y =

∞∑
i=1

bi · x0 . . . xi−1 .

23 / 25



Example of interest: Ostrowski expansion

Ostrowski transformation

Given irrationals x, y ∈ [0, 1] define

S(x, y) = ({1/x} , {y/x}) ,

where {t} := t− ⌊t⌋ is the fractional part.

Digits are produced at each iteration i ≥ 1 by (xi, yi)

ai = ⌊1/xi⌋ , bi = ⌊yi/xi⌋ .

We retrieve (x, y) by

x =
1

a1 +
1

a2 +
. . .

, y =
∞∑
i=1

bi · x0 . . . xi−1 .

23 / 25



Partitions: Ostrowski expansion

Partition P1 according to (a1, b1) and P2 according to (a1, b1, a2, b2).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a= 1, b= 0

a= 1, b= 1

a= 2, b= 0

a= 2, b= 1
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0.6
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Final remarks and conclusions

⊛ Possible to have meaningful information for zero entropy

⇒ results also work for infinite entropy.

⊛ Results apply for almost every x,

⇒ what about my slope α ? if CF-digits satisfy log ak(α) = o(k),

logLn(α;B,F) ≤ log 2

2
n+ o(n) ,

but we cannot say much about the lim inf.

⊛ Several systems of partitions from Number Theory are log-balanced

⇒ almost everywhere or just in measure.

Questions and further work

1. Existence result for the weight ?

2. More explicit results for fixed x? Lochs’ like results on average ?

3. Bidimensional case more complicated
⇒ measure and diameter not enough.
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