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1. Random BST-like tree model
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» Automated testing, benchmark testing

e Correctness and performance of algorithms

» Randomly generated input

e Realistic distribution

e Simple implementation, possibility of theoretical analysis.
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BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

LIf n = 2, constrained to arity one.
2/24



BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

Idea: fix probability vectors (p,,) and (p,) for operators and leaves.

If n = 2, constrained to arity one.
2/24



BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

Idea: fix probability vectors (p,,) and (p,) for operators and leaves.

> If n > 1, pick operator! following (p,,), else pick random leaf (p,).

If n = 2, constrained to arity one.
2/24



BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

Idea: fix probability vectors (p,,) and (p,) for operators and leaves.
> If n > 1, pick operator! following (p,,), else pick random leaf (p,).

» if operator is binary, choose size of branches uniformly,

If n = 2, constrained to arity one.
2/24



BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

Idea: fix probability vectors (p,,) and (p,) for operators and leaves.
> If n > 1, pick operator! following (p,,), else pick random leaf (p,).

» if operator is binary, choose size of branches uniformly,

Ijbr(|TL|:k:):ﬁ, Ek=1,2,...,n—1.

» build sub-trees recursively and independently!

If n = 2, constrained to arity one.
2/24



BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

Idea: fix probability vectors (p,,) and (p,) for operators and leaves.
> If n > 1, pick operator! following (p,,), else pick random leaf (p,).

» if operator is binary, choose size of branches uniformly,

Pr(|Tp| = k) = 215, k=1,2,...,n—1.
n
» build sub-trees recursively and independently!

Example.

I
Pryn ( + ) = PuP+ 5PaDb
/

If n = 2, constrained to arity one.
2/24



Why binary search “like” 7

» Build BST from n random numbers u; € [0,1] :

» With probability % root corresponds to k-th ranked u;.
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Why binary search “like” 7

» Build BST from n random numbers u; € [0,1] :

(0.6 )

(0.2) (0.8 )

(0.1) (0.4)

» With probability % root corresponds to k-th ranked u;.

» Equivalently, subtrees have sizes |T;| =k — 1 and |Tr| =n — k.

Same construction: force our subtrees to have |TL|,|Tr| > 1, as node

corresponds to binary operator.
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BST-like trees: a natural construction algorithm

Code used in tool 1btt (from TCS) to draw an LTL formula:

function RandomFormula(n):
if n = 1 then
p := random symbol in APU{T, L};
return p;
else if n = 2 then
op = random unary operator in {—, X, 0, 0};
f := RandomFormula(1);
return op f;
else
op = random operator in {—,X,,0,A,V,—, <>, U R},
if op in {—,X,0, 0} then
f := RandomFormula(n — 1);

return op f;
else
x := uniform integer in [1,n — 2];
f1 := RandomFormula(z);
f2 = RandomFormula(n — z — 1);

return (f1 op f2);
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Example: BST-like distribution

Consider the regular expressions (+, e, %) on two letters a, b
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Example: BST-like distribution

Consider the regular expressions (+, e, %) on two letters a, b

* +
/N

I (i) a

N
7
o =k =t

» The expression tree (i) is drawn with probability

PsD+ 5PaPb -

» The expression tree (ii) is drawn with probability

P+ %pap*pb .

= Distribution not uniform for any choice of parameters
5/24



BST-like trees: distribution over unary-binary trees
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BST-like trees: distribution over unary-binary trees
i m@mﬂﬂjﬁﬁﬁ

BST-like tree distribution is not uniform?.

- i

» Binary nodes ~ balanced 5—-% T

272 o -

but for uniform trees LD

E,[min(|TL], |Tr|)] ~ cov/n .

18

» Expected height of different order

O(logn) vs O(v/n) .

“Tree T chosen uniformly from {T : |T| = n}.
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Uniform and BST-like distributions

The uniform distribution:
P naturally maximizes entropy.

» can be sampled efficiently with some effort
(Recursive method, Boltzmann samplers, Devroye's constrained GW).

» is amenable to theoretical study (Analytic Combinatorics).
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Uniform and BST-like distributions

The uniform distribution:
P naturally maximizes entropy.
» can be sampled efficiently with some effort

(Recursive method, Boltzmann samplers, Devroye's constrained GW).

» is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:
» must be parametrized (prob. of operators).
P is easy to implement and very efficient.

P is often used in the automated checking of tools.

We had previously studied semantically uniform expressions...

7/24



Section

2. Semantic simplifications



Semantic simplification

Given tree may be redundant
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Semantic simplification

Given tree may be redundant

Or even more:
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Question

z1

Do semantic reductions affect the size of the random expressions? J
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Semantic simplification

Universal result for uniform tree model:
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Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,20) J

Expected size of reduction of uniform tree bounded, as size — co.

» |dea based on absorbing pattern P, e.g., false A (...) = false,
® ®
/\ ~ P /\ ~P
P T T P
» Works also for systems and different arities,

Lrp=|+S,
Example : S v A
S:a—l—b—i—ﬁ/\ +z:/\

r LR R LR

» For regular expressions on two letters, constant bound ~ 77.8.
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Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
To define an absorbing pattern we fix:

> an “operator” ® € Agyps with arity 2,

P an expression tree P in the family.
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Absorbing patters: simplifying the trees
Denote by o(T') = o(T,P,®) the simplification of 7.
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Absorbing patters: simplifying the trees
Denote by o(T') = o(T,P,®) the simplification of 7.

Example: regular expressions (+,,%) on two letters a, b:
P = (a + b)* absorbing for union ® = +

/ AN , N
( /o = ): o
T1 * * b * b
| /7 \ y \
+ b e b .
/ \ / \ / \
a b T o(Ty) o(Ty)
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If we draw a random BST-like tree expression of size n:

» do we have the same flaw as uniform trees?
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If we draw a random BST-like tree expression of size n:

» do we have the same flaw as uniform trees?
= we characterize 5 regimes

Experimental expected size (10 000 samples)? on regular expressions
(+,,%) on two letters a, b:
P = (a+ b)* absorbing for union ® = +
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3. Result for BST-like trees and elements of the proof



Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ® of arity 2.

Take the simplification consisting in inductively changing a ®-node
by P whenever one of its children simplifies to P.
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Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ® of arity 2.

Take the simplification consisting in inductively changing a ®-node
by P whenever one of its children simplifies to P.

Then the of the simplification of a random BST-like
tree has an asymptotic behaviour given by the following cases,
depending on the probability pg of the absorbing operator:

@(m) ©(logn)
o(n) O (n?) e(1)

—_

significant 3—p,  degenerate 1

0 almost no reduction ) 1
reduction case

o= 4

» Probability pg of ®, and p| of picking unary operator.
» Two critical points pg = 1/2 and pg = (3 —p1)/4

> Regimes from no reduction ©(n) to complete reduction ©(1)
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The main regimes experimentally
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The main regimes experimentally

O(-2) ©(logn)

(logn)¥
O(n) o(n’) o(1)
0 almost no reduction % significant 3-p;  degenerate

reduction 4 case

Experimental plots (10 000 samples)for regular expressions on two
letters a,b: P = (a + b)* absorbing for union ® = +

107, 100
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Figure: Left to right: linear (p; = p. = p. = 1), sublinear (p; = 37,

px =D. = 55) and constant (p4 = 5, px = p. = 15)-
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Scheme of the proof: steps from Analytic combinatorics
We employ Analytic Combinatorics to study the expectation,

» Ordinary generating function

E(z):= Z ez,

n=0

encodes sequence e, := E,[o(T)].
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Scheme of the proof: steps from Analytic combinatorics
We employ Analytic Combinatorics to study the expectation,

» Ordinary generating function

[e.e]
E(z) := Z ez,
n=0

encodes sequence e, := E,[o(T)].
» Symbolic Step. We find a formal equation describing E(z).

Here this will be an ordinary differential equation

E'(2)=B(2)+C(2)- E(2).
> Analytic Step. We look at E(z) over the complex z € C.

A Transfer Theorem links the behaviour of E(z) at its
dominant singularity to asymptotics of e,, = Study singularities

E(2) ~m1 M1 = 2) % = e, ~ An“ 1T (a)

15 /24



Symbolic step: fully reducible trees
An expression tree T is fully reducible when o(T) = P.
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Symbolic step: fully reducible trees
An expression tree T is fully reducible when o(T') = P.

Fully reducible expressions

» dictate the reduction process:
leaves of the reduced expression.

» can also be specified recursively, e.g.,
*
: + +
P= + 5 R=P+_/\ + /\ .
e b R £ £ R

Yo :=Pr{c(T) =P}, A(z) := Zvnz",

of probabilities of full reduction and their generating function.

16/24



Symbolic step: recurrence for the expected value

We consider a fundamental sequence
Yo := Pr{o(T) =P},

of probabilities of full reduction.
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Symbolic step: recurrence for the expected value

We consider a fundamental sequence
Y = Pr{o(T) =P},

of probabilities of full reduction.

Recurrence for expected values

The recurrence for e, involves ~,,

En+1 = 1+(3 - 1)7n+11n+17és + pien

n—1 n—1

2pu Z j+ 2]0@ Z —sy)(

here p;j := 1 —p; — pg and s = |P|.

’777/7]) )
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Symbolic step: recurrence = differential equation
Recurrence yields first order differential equation

E'(2) = F(z A(2) + 125z (2 =P +2(1 = p1) 12— — 200 4(2)) - E(2),

1—-pz

in terms of A(z) =, vn2™.
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Symbolic step: recurrence = differential equation
Recurrence yields first order differential equation

E'(2) = F(z,A) + 5 (2—pi+2(1 = p) 7=

1—-pz — 2

~2paA(2)) - E(2),

in terms of A(z) =, vn2™.

Proof.
Differentiating we have E’(z) = Y (n + 1)e,2™. DJ

First order differential equations can be solved explicitly

Proposition

The equation U'(z) = f(z) + g(2)U(z) where f, g are analytic functions
on (2 has a unique solution analytic on 2, satisfying U(0) = wuy,

v =ew ([ a0c) (ot [ screm (— / <g<w>cm> @)
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Recurrence yields first order differential equation

E'(2) = F(z,A) + 5 (2—pi+2(1 = p) 7=

1—-pz — 2

~2paA(2)) - E(2),

in terms of A(z) =, vn2™.

Proof.
Differentiating we have E’(z) = Y (n + 1)e,2™. DJ

First order differential equations can be solved explicitly

Proposition

The equation U'(z) = f(z) + g(2)U(z) where f, g are analytic functions
on (2 has a unique solution analytic on 2, satisfying U(0) = wuy,

v =ew ([ a0c) (ot [ screm (— / <g<w>cm> @)

Our coefficients depend on z and the unkown generating function A(z).

V.
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Analytic step: the singularity z =1

The generating functions A(z) and E(z)

> are analytic for |z| < 1, as the series converge absolutely.
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The generating functions A(z) and E(z)
» are analytic for |z| < 1, as the series converge absolutely.

» have z = 1 as a dominant singularity: p =1 radius of
convergence.

Solution of ODE gives asymptotics

Cc
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Analytic step: the singularity z =1

The generating functions A(z) and E(z)
» are analytic for |z| < 1, as the series converge absolutely.

» have z = 1 as a dominant singularity: p =1 radius of
convergence.

Solution of ODE gives asymptotics

Cc

B ~ e (24 [ Fld@)rwiae) 1) s o1,

where I(z) := exp (2p® 7 A dw).

0 1—-pw

To apply the Transfer Theorem and complete the proof:
» we require precise asymptotics for A(z) at z =1,
» we show that A(z) and E(z) are analytic over = C\ [1, 00).
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Fully reducible trees: probabilities

We study the generating function A(z) = > v,2"

Proposition: recurrence for 7,
The probabilities ~y,, = Pr,, {o(T) = P} satisfy, for n > |P|,

n—1

P
Tnt+1 = n—jal ;(’m + Yn—k = VkVn—k) -
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Fully reducible trees: probabilities

We study the generating function A(z) = > v,2"
Proposition: recurrence for 7,
The probabilities 7, = Pr,, {o(T') = P} satisfy, for n > |P|,

n—1

p
Tnt+1 = nijal ;(’Yk + Yn—k = VkVn—k) -

Remark. If v, — 7Yoo, by Cesaro means 7o = pe - (2700 — 7).

Recurrence translates into Riccati differential equation

A = (5= 2+ (2 2o 5 ) 4G - (AP,

where s = |P| is the size of the absorbing pattern.
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Behaviour of solutions of Riccati ODE
Considering v(2) such that pg A(2) = v/(2)/v(2),
Riccati equation becomes linear

V" (2) = pe - (5 — 2)7s2° Tu(2) + <z + 2pe 1 i z> v'(2).
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Behaviour of solutions of Riccati ODE
Considering v(2) such that pg A(2) = v/(2)/v(2),
Riccati equation becomes linear

V" (2) = pe - (5 — 2)7s2° Tu(2) + <z + 2pe 1 & z> v'(2).

For linear ODEs:

» domain of analyticity well-understood.

P Frobenius method characterizes behaviour at singularities.
Proposition
The generating function A(z) satisfies, z — 1

» For pg > % Az) = = +0((1 - z)?Pe=2),

A = % (s (125)) (10 (s () 7))

> For pg < 3, A(z) ~

» For pg =

N

D
(1—z2)*® "

where Yoo 1= (2pg — 1)/pe and D > 0 is a constant.
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Probability of full reduction

Theorem

The probability v, of being fully reducible tends to the constant
Yoo := (2pe — 1)/pe for ps > % and to zero otherwise.

Moreover,
_ 1
» for ps = 5 we have v, ~ Togn’
> for pe < % Y ~ D -n2Pe~L
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Probability of full reduction

Theorem
The probability v, of being fully reducible tends to the constant
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Proof principles: analytic step — Frobenius method
Recall. From the Riccati equation, we have a 2nd order linear ODE

V'(2) = pe - (5 = 2752 M0(2) + (i + 207 z Z) v'(2),

and we want the behavior around z = 1 (false pole at z = 0).
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solution of the ODE.
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Proof principles: analytic step — Frobenius method
Recall. From the Riccati equation, we have a 2nd order linear ODE

V'(2) = pe - (5 = 2752 M0(2) + (i + 207 z z) v'(2),

and we want the behavior around z = 1 (false pole at z = 0).

Frobenius Method [Fuchs’ Theorem]

Let v"(2) = (1q£Zz))2v(z) + %v’(z) with ¢(z) and p(z) analytic at z = 1.
If v is a root of the indicial equation
X% = (p(1) + D)X +q(1),

there is h,(z) analytic at 1, ho(1) = 1, such that (1 — 2)%h,(2) is a
solution of the ODE.

Let a; and ao be the roots of the indicial equation.
> If ay — s € 7Z, solutions are linearly independent.

> If a; — ap € Z, factor (1 — z)l*1=22l is polynomial.

— to obtain independent solution multiply x log(1 — z). )
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Conclusions and further work

Conclusions

® BST-like expression trees present a richer range of behaviours
than the uniform ones.

® Not exempt of degenerate cases however
= tuning probabilities might be important.

Questions and further work

1. Absorbing operator ® of arity a > 3 7
= expect similar results, threshold é instead of %

2. Absorbing pattern model is
= consider interactions between operators?

3. Take a concrete case: LTL formulas.
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