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Introduction

▶ Expression trees
∧

∨ ¬
x3x1 ¬

x2

(x1 ∨ ¬x2) ∧ ¬x3

⋆

•

b +

a ε

(b · (a+ ε))⋆

→

□X

U¬
rqp

X(¬p) → □(qUr)

▶ Automated testing, benchmark testing

• Correctness and performance of algorithms

▶ Randomly generated input

• Realistic distribution

• Simple implementation, possibility of theoretical analysis.
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BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

▶ representing expression with unary and binary operators,

▶ leaves correspond to constants or variables.

Idea: fix probability vectors (pop) and (pa) for operators and leaves.

▶ If n > 1, pick operator1 following (pop), else pick random leaf (pa).

▶ if operator is binary, choose size of branches uniformly,

Pr
n
(|TL| = k) = 1

n−2 , k = 1, 2, . . . , n− 1 .

▶ build sub-trees recursively and independently!

Example.

Prn

( ⋆

+

⋆a

b

)
= p⋆p+

1
2
papb

1If n = 2, constrained to arity one.
2 / 24
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Why binary search “like” ?

▶ Build BST from n random numbers ui ∈ [0, 1] :

0.6

0.2 0.8

0.1 0.4

▶ With probability 1
n , root corresponds to k-th ranked ui.

▶ Equivalently, subtrees have sizes |TL| = k − 1 and |TR| = n− k.

Same construction: force our subtrees to have |TL|, |TR| ≥ 1, as node

corresponds to binary operator.

3 / 24
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BST-like trees: a natural construction algorithm

Code used in tool lbtt (from TCS) to draw an LTL formula:

function RandomFormula(n):
if n = 1 then

p := random symbol in AP ∪ {⊤,⊥};
return p;

else if n = 2 then
op := random unary operator in {¬,X,□,♢};
f := RandomFormula(1);
return op f ;

else
op := random operator in {¬,X,□,♢,∧,∨,→,↔,U,R};
if op in {¬,X,□,♢} then

f := RandomFormula(n− 1);
return op f ;

else
x := uniform integer in [1, n− 2];
f1 := RandomFormula(x);
f2 := RandomFormula(n− x− 1);
return (f1 op f2);

4 / 24



Example: BST-like distribution
Consider the regular expressions (+, •, ⋆) on two letters a, b

(i)

⋆

+

⋆a

b

(ii)

+

a ⋆

⋆

b

▶ The expression tree (i) is drawn with probability

p⋆p+
1
2papb .

▶ The expression tree (ii) is drawn with probability

p+
1
3pap⋆pb .

=⇒ Distribution not uniform for any choice of parameters.
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BST-like trees: distribution over unary-binary trees

BST-like tree distribution is not uniforma.

▶ Binary nodes ≈ balanced n
2 –

n
2 ,

but for uniform trees

En[min(|TL|, |TR|)] ∼ c0
√
n .

▶ Expected height of different order

Θ(log n) vs Θ(
√
n) .

aTree T chosen uniformly from {T : |T | = n}.
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Uniform and BST-like distributions

The uniform distribution:

▶ naturally maximizes entropy.

▶ can be sampled efficiently with some effort
(Recursive method, Boltzmann samplers, Devroye’s constrained GW).

▶ is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:

▶ must be parametrized (prob. of operators).

▶ is easy to implement and very efficient.

▶ is often used in the automated checking of tools.

We had previously studied semantically uniform expressions...
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Semantic simplification

Given tree may be redundant

∨

¬ ¬

∨

a ¬

c

a

≡

∨

¬ ¬

∨ c

a ¬

a

Or even more:

+

×

0 +

...
...

x1

≡
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Semantic simplification
Given tree may be redundant

∨

¬ ¬

∨

a ¬

c

a

≡
¬

c

Or even more:

+

×

0 +

...
...

x1

≡ x1

Question

Do semantic reductions affect the size of the random expressions?
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Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,’20)

Expected size of reduction of uniform tree bounded, as size→ ∞.

▶ Idea based on absorbing pattern P, e.g., false ∧ (. . .) ≡ false,

⊛
/ \

P T
⇝ P

⊛
/ \

T P
⇝ P

▶ Works also for systems and different arities,

Example :

LR =
¬
|
S
+ S,

S = a+ b+
∨
/\

LR LR

+
∧
/\

LR LR

.

▶ For regular expressions on two letters, constant bound ≈ 77.8 .
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Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

To define an absorbing pattern we fix:

▶ an “operator” ⊛ ∈ Aops with arity 2,

▶ an expression tree P in the family.

Simplify by applying bottom-up the rule:
⊛

C1 C2

⇝ P , whenever Ci = P for some i ∈ {1, 2}.

▶ Wide variety of examples:

∨
xi ¬xi

operator ∨

⋆

+
a b

operator +

x 7→ 0

operator ×

▶ Weak hypothesis: in practice often several coexisting patterns !

10 / 24



Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

To define an absorbing pattern we fix:

▶ an “operator” ⊛ ∈ Aops with arity 2,

▶ an expression tree P in the family.

Simplify by applying bottom-up the rule:
⊛

C1 C2

⇝ P , whenever Ci = P for some i ∈ {1, 2}.

▶ Wide variety of examples:

∨
xi ¬xi

operator ∨

⋆

+
a b

operator +

x 7→ 0

operator ×

▶ Weak hypothesis: in practice often several coexisting patterns !

10 / 24



Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

To define an absorbing pattern we fix:

▶ an “operator” ⊛ ∈ Aops with arity 2,

▶ an expression tree P in the family.

Simplify by applying bottom-up the rule:
⊛

C1 C2

⇝ P , whenever Ci = P for some i ∈ {1, 2}.

▶ Wide variety of examples:

∨
xi ¬xi

operator ∨

⋆

+
a b

operator +

x 7→ 0

operator ×

▶ Weak hypothesis: in practice often several coexisting patterns !

10 / 24



Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

To define an absorbing pattern we fix:

▶ an “operator” ⊛ ∈ Aops with arity 2,

▶ an expression tree P in the family.

Simplify by applying bottom-up the rule:
⊛

C1 C2

⇝ P , whenever Ci = P for some i ∈ {1, 2}.

▶ Wide variety of examples:

∨
xi ¬xi

operator ∨

⋆

+
a b

operator +

x 7→ 0

operator ×

▶ Weak hypothesis: in practice often several coexisting patterns !

10 / 24



Absorbing patters: simplifying the trees
Denote by σ(T ) = σ(T,P,⊛) the simplification of T .

Example: regular expressions (+, •, ⋆) on two letters a, b:
P = (a+ b)⋆ absorbing for union ⊛ = +

•

T1

a b

+

⋆

+

b

T2 T3

•

⋆ b

•

σ

( )
=

•

P

b

σ(T2) σ(T3)

•

⋆ b

•
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If we draw a random BST-like tree expression of size n:

▶ do we have the same flaw as uniform trees?

=⇒ we characterize 5 regimes

Experimental expected size (10 000 samples)2 on regular expressions
(+, •, ⋆) on two letters a, b:

P = (a+ b)⋆ absorbing for union ⊛ = +

0 0.2 0.4 0.6 0.8 1 ·1070
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3
, 1
3
, 1
3
),(p⋆, p•, p+) = ( 5
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)
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Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ⊛ of arity 2.

Take the simplification consisting in inductively changing a ⊛-node
by P whenever one of its children simplifies to P.

Then the expected size of the simplification of a random BST-like
tree has an asymptotic behaviour given by the following cases,
depending on the probability p⊛ of the absorbing operator:

0 1

p⊛
Θ(n)

almost no reduction

Θ( n
(logn)γ )

1
2

Θ(nθ)

significant

reduction

3−pI
4

Θ(log n)

Θ(1)

degenerate

case

▶ Probability p⊛ of ⊛, and pI of picking unary operator.

▶ Two critical points p⊛ = 1/2 and p⊛ = (3− pI)/4

▶ Regimes from no reduction Θ(n) to complete reduction Θ(1)
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Scheme of the proof: steps from Analytic combinatorics
We employ Analytic Combinatorics to study the expectation,

▶ Ordinary generating function

E(z) :=

∞∑
n=0

enz
n ,

encodes sequence en := En[σ(T )].

▶ Symbolic Step. We find a formal equation describing E(z).

Here this will be an ordinary differential equation

E′(z) = B(z) + C(z) · E(z) .

▶ Analytic Step. We look at E(z) over the complex z ∈ C.
A Transfer Theorem links the behaviour of E(z) at its

dominant singularity to asymptotics of en ⇒ Study singularities

E(z) ∼z→1 λ(1− z)−α =⇒ en ∼ λnα−1/Γ(α)
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Symbolic step: fully reducible trees
An expression tree T is fully reducible when σ(T ) = P.

+

+ *

* .

+

a b

b b

.

+ b

* a

a

Fully reducible expressions

▶ dictate the reduction process:
leaves of the reduced expression.

▶ can also be specified recursively, e.g.,

P =

⋆

+
a b

; R = P +
+
/ \

R L
+

+
/ \

L R
.

We consider a fundamental sequence

γn := Pr
n
{σ(T ) = P} , A(z) :=

∑
γnz

n ,

of probabilities of full reduction and their generating function.
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Symbolic step: recurrence for the expected value

We consider a fundamental sequence

γn := Pr
n
{σ(T ) = P} ,

of probabilities of full reduction.

Recurrence for expected values

The recurrence for en involves γn,

en+1 = 1+(s− 1)γn+11n+1̸=s + pIen

+
2pII
n− 1

n−1∑
j=1

ej +
2p⊛
n− 1

n−1∑
j=1

(ej − sγj)(1− γn−j) ,

here pII := 1− pI − p⊛ and s = |P|.
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Symbolic step: recurrence = differential equation
Recurrence yields first order differential equation

E′(z) = F (z,A(z))+ 1
1−pIz

(
2
z −pI+2 (1− pI)

z

1− z
−2p⊛A(z)

)
·E(z) ,

in terms of A(z) =
∑

n γnz
n.

Proof.

Differentiating we have E′(z) =
∑

(n+ 1)enz
n.

First order differential equations can be solved explicitly

Proposition

The equation U ′(z) = f(z) + g(z)U(z) where f, g are analytic functions
on Ω has a unique solution analytic on Ω, satisfying U(0) = u0,

U(z) = exp

(∫ z

0

g(ζ)dζ

)(
u0 +

∫ z

0

f(ζ) exp

(
−
∫ ζ

0

g(w)dw

)
dζ
)
.

Our coefficients depend on z and the unkown generating function A(z).
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Analytic step: the singularity z = 1

The generating functions A(z) and E(z)

▶ are analytic for |z| < 1, as the series converge absolutely.

▶ have z = 1 as a dominant singularity: ρ = 1 radius of

convergence.

Solution of ODE gives asymptotics

E(z) ∼ c

(1− z)2

(
2 +

∫ z

0

F (w,A(w))I(w)dw

)
(I(z))−1 , z → 1 ,

where I(z) := exp
(
2p⊛

∫ z

0
A(w)
1−pIw

dw
)
.

To apply the Transfer Theorem and complete the proof:

▶ we require precise asymptotics for A(z) at z = 1,

▶ we show that A(z) and E(z) are analytic over Ω = C \ [1,∞).
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Fully reducible trees: probabilities

We study the generating function A(z) =
∑

γnz
n

Proposition: recurrence for γn

The probabilities γn = Prn {σ(T ) = P} satisfy, for n ≥ |P|,

γn+1 =
p⊛

n− 1

n−1∑
k=1

(γk + γn−k − γkγn−k) .

Remark. If γn → γ∞, by Cesàro means γ∞ = p⊛ · (2γ∞ − γ2
∞).

Recurrence translates into Riccati differential equation

A′(z) = (s− 2)γsz
s−1 +

(
2

z
+ 2p⊛

z

1− z

)
A(z)− p⊛ · (A(z))2 ,

where s = |P| is the size of the absorbing pattern.
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Behaviour of solutions of Riccati ODE
Considering v(z) such that p⊛A(z) = v′(z)/v(z),

Riccati equation becomes linear

v′′(z) = p⊛ · (s− 2)γsz
s−1v(z) +

(
2

z
+ 2p⊛

z

1− z

)
v′(z) .

For linear ODEs:
▶ domain of analyticity well-understood.
▶ Frobenius method characterizes behaviour at singularities.

Proposition

The generating function A(z) satisfies, z → 1

▶ For p⊛ > 1
2 , A(z) =

γ∞
1−z +O((1− z)2p⊛−2),

▶ For p⊛ = 1
2 , A(z) =

2
1−z

(
log
(

1
1−z

))−1
(
1 +O

(
log
(

1
1−z

)−1
))

▶ For p⊛ < 1
2 , A(z) ∼

D
(1−z)2p⊛

,

where γ∞ := (2p⊛ − 1)/p⊛ and D > 0 is a constant.
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Probability of full reduction

Theorem

The probability γn of being fully reducible tends to the constant
γ∞ := (2p⊛ − 1)/p⊛ for p⊛ > 1

2 and to zero otherwise.

Moreover,

▶ for p⊛ = 1
2 we have γn ∼ 2

logn ,

▶ for p⊛ < 1
2 , γn ∼ D · n2p⊛−1.

Experimental plot:
regular expressions on
two letters with

(p+, p•, p⋆) = ( 8
10 ,

1
10 ,

1
10 ) .

Then

lim
n→∞

γn = 3/4 .
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n0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Prop. fully reducible

22 / 24



Probability of full reduction

Theorem

The probability γn of being fully reducible tends to the constant
γ∞ := (2p⊛ − 1)/p⊛ for p⊛ > 1

2 and to zero otherwise.

Moreover,

▶ for p⊛ = 1
2 we have γn ∼ 2

logn ,

▶ for p⊛ < 1
2 , γn ∼ D · n2p⊛−1.

Experimental plot:
regular expressions on
two letters with

(p+, p•, p⋆) = ( 8
10 ,

1
10 ,

1
10 ) .

Then

lim
n→∞

γn = 3/4 .

101 103 105 107
n0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Prop. fully reducible

22 / 24



Proof principles: analytic step – Frobenius method
Recall. From the Riccati equation, we have a 2nd order linear ODE

v′′(z) = p⊛ · (s− 2)γsz
s−1v(z) +

(
2

z
+ 2p⊛

z

1− z

)
v′(z) ,

and we want the behavior around z = 1 (false pole at z = 0).

Frobenius Method [Fuchs’ Theorem]

Let v′′(z) = q(z)
(1−z)2 v(z) +

p(z)
1−z v

′(z) with q(z) and p(z) analytic at z = 1.

If α is a root of the indicial equation

X2 = (p(1) + 1)X + q(1) ,

there is hα(z) analytic at 1, hα(1) = 1, such that (1− z)αhα(z) is a
solution of the ODE.

Let α1 and α2 be the roots of the indicial equation.

▶ If α1 − α2 ̸∈ Z, solutions are linearly independent.

▶ If α1 − α2 ∈ Z, factor (1− z)|α1−α2| is polynomial.
=⇒ to obtain independent solution multiply × log(1− z).
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Conclusions

⊛ BST-like expression trees present a richer range of behaviours
than the uniform ones.

⊛ Not exempt of degenerate cases however
⇒ tuning probabilities might be important.

Questions and further work

1. Absorbing operator ⊛ of arity a ≥ 3 ?
⇒ expect similar results, threshold 1

a instead of 1
2 .

2. Absorbing pattern model is general
⇒ consider interactions between operators?

3. Take a concrete case: LTL formulas.
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