Absorbing patterns in BST-like expression-trees

Pablo Rotondo

LIGM, Université Gustave Eiffel

Joint work with
Florent Koechlin

LIPN, Sorbonne Paris Nord

Meeting EPA!,
Buenos Aires, 24 October, 2024.

Plan of the talk

1. Random BST-like tree model

2. Semantic simplifications

3. Result for BST-like trees and elements of the proof

4. Conclusions

Section

1. Random BST-like tree model

Introduction

» Expression trees

(:El \Y —\:EQ) N —zx3

X (=p) = O(qUr)

1/24

Introduction

» Expression trees
A * —
7’ N 1 7/ AN
v - . X O
VRN 1 VRS ' '
T - I3 b —+ = U
| ’ AN ! ’ ~
z2 a € P q r
(b-(a+e)” X(=p) = O(qUr)

(:El V —\LEQ) N —x3

» Automated testing, benchmark testing

e Correctness and performance of algorithms

1/24

Introduction

» Expression trees

AN * —
4 AN 1 4 N
Y - . X O
RN ! RS ' .
x1 - x3 b + - U
1 PN] PN
€2 a £ P q T
(z1 V —x2) A —x3 (b-(a+e))* X(=p) — O(qUr)

» Automated testing, benchmark testing

e Correctness and performance of algorithms

» Randomly generated input

e Realistic distribution

e Simple implementation, possibility of theoretical analysis.

1/24

BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

LIf n = 2, constrained to arity one.
2/24

BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

Idea: fix probability vectors (p,,) and (p,) for operators and leaves.

If n = 2, constrained to arity one.
2/24

BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

Idea: fix probability vectors (p,,) and (p,) for operators and leaves.

> If n > 1, pick operator! following (p,,), else pick random leaf (p,).

If n = 2, constrained to arity one.
2/24

BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

Idea: fix probability vectors (p,,) and (p,) for operators and leaves.
> If n > 1, pick operator! following (p,,), else pick random leaf (p,).

» if operator is binary, choose size of branches uniformly,

If n = 2, constrained to arity one.
2/24

BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

Idea: fix probability vectors (p,,) and (p,) for operators and leaves.
> If n > 1, pick operator! following (p,,), else pick random leaf (p,).

» if operator is binary, choose size of branches uniformly,

Ijbr(|TL|:k:):ﬁ, Ek=1,2,...,n—1.

» build sub-trees recursively and independently!

If n = 2, constrained to arity one.
2/24

BST-like trees: a natural construction algorithm
Problem: sample random tree of size n,

P representing expression with unary and binary operators,

» |eaves correspond to constants or variables.

Idea: fix probability vectors (p,,) and (p,) for operators and leaves.
> If n > 1, pick operator! following (p,,), else pick random leaf (p,).

» if operator is binary, choose size of branches uniformly,

Pr(|Tp| = k) = 215, k=1,2,...,n—1.
n
» build sub-trees recursively and independently!

Example.

I
Pryn (+) = PuP+ 5PaDb
/

If n = 2, constrained to arity one.
2/24

Why binary search “like” 7

» Build BST from n random numbers u; € [0,1] :

» With probability % root corresponds to k-th ranked u;.

3/24

Why binary search “like” 7

» Build BST from n random numbers u; € [0,1] :

» With probability % root corresponds to k-th ranked u;.

» Equivalently, subtrees have sizes [T | =k — 1 and |Tgr| =n — k.

3/24

Why binary search “like” 7

» Build BST from n random numbers u; € [0,1] :

(0.6)

(0.2) (0.8)

(0.1) (0.4)

» With probability % root corresponds to k-th ranked u;.

» Equivalently, subtrees have sizes |T;| =k — 1 and |Tr| =n — k.

Same construction: force our subtrees to have |TL|,|Tr| > 1, as node

corresponds to binary operator.

3/24

BST-like trees: a natural construction algorithm

Code used in tool 1btt (from TCS) to draw an LTL formula:

function RandomFormula(n):
if n = 1 then
p := random symbol in APU{T, L};
return p;
else if n = 2 then
op = random unary operator in {—, X, 0, 0};
f := RandomFormula(1);
return op f;
else
op = random operator in {—,X,,0,A,V,—, <>, U R},
if op in {—,X,0, 0} then
f := RandomFormula(n — 1);

return op f;
else
x := uniform integer in [1,n — 2];
f1 := RandomFormula(z);
f2 = RandomFormula(n — z — 1);

return (f1 op f2);

4/24

Example: BST-like distribution

Consider the regular expressions (+, e, %) on two letters a, b

* +
/N

I (i) a

N
7
o =k =t

» The expression tree (i) is drawn with probability

PsD+ 5PaPb -

5/24

Example: BST-like distribution

Consider the regular expressions (+, e, %) on two letters a, b

* +
/N

I (i) a

N
7
o =k =t

» The expression tree (i) is drawn with probability

PsD+ 5PaPb -

» The expression tree (ii) is drawn with probability

P+ %pap*pb .

5/24

Example: BST-like distribution

Consider the regular expressions (+, e, %) on two letters a, b

* +
/N

I (i) a

N
7
o =k =t

» The expression tree (i) is drawn with probability

PsD+ 5PaPb -

» The expression tree (ii) is drawn with probability

P+ %pap*pb .

= Distribution not uniform for any choice of parameters
5/24

BST-like trees: distribution over unary-binary trees
i m@mﬂﬂjﬁﬁﬁ

BST-like tree distribution is not uniform?.

6/24

BST-like trees: distribution over unary-binary trees
i m@mﬂﬂjﬁﬁﬁ

BST-like tree distribution is not uniform?.

- i

» Binary nodes ~ balanced 5—-% T

272 o -

but for uniform trees LD

E,[min(|TL], |Tr|)] ~ cov/n .

18

» Expected height of different order

O(logn) vs O(v/n) .

“Tree T chosen uniformly from {T : |T| = n}.

6/24

Uniform and BST-like distributions

The uniform distribution:
P naturally maximizes entropy.

» can be sampled efficiently with some effort
(Recursive method, Boltzmann samplers, Devroye's constrained GW).

» is amenable to theoretical study (Analytic Combinatorics).

7/24

Uniform and BST-like distributions

The uniform distribution:
P naturally maximizes entropy.

» can be sampled efficiently with some effort
(Recursive method, Boltzmann samplers, Devroye's constrained GW).

» is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:
» must be parametrized (prob. of operators).
P is easy to implement and very efficient.

P is often used in the automated checking of tools.

7/24

Uniform and BST-like distributions

The uniform distribution:
P naturally maximizes entropy.
» can be sampled efficiently with some effort

(Recursive method, Boltzmann samplers, Devroye's constrained GW).

» is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:
» must be parametrized (prob. of operators).
P is easy to implement and very efficient.

P is often used in the automated checking of tools.

We had previously studied semantically uniform expressions...

7/24

Section

2. Semantic simplifications

Semantic simplification

Given tree may be redundant

\Y% \%
VAR VAR
- - - -
1 | — 1 |
\Y c - \Y c
VRN VAN
a - a -
| |
a a

8/24

Semantic simplification

Given tree may be redundant

8/24

Semantic simplification

Given tree may be redundant

8/24

Semantic simplification

Given tree may be redundant

8/24

Semantic simplification

Given tree may be redundant

8/24

Semantic simplification

Given tree may be redundant

Or even more:

o
+
Il

8/24

Semantic simplification

Given tree may be redundant

Or even more:

o
+
Il

8/24

Semantic simplification

Given tree may be redundant

Or even more:

o
+
Il

Question

z1

Do semantic reductions affect the size of the random expressions? J

8/24

Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,"20) J

Expected size of reduction of uniform tree bounded, as size — co.

9/24

Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,"20) J

Expected size of reduction of uniform tree bounded, as size — co.

» |dea based on absorbing pattern P, e.g., false A (...) = false,

® ®
/\ ~ P /\ ~P
P T T P

9/24

Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,"20) J

Expected size of reduction of uniform tree bounded, as size — co.

» |dea based on absorbing pattern P, e.g., false A (...) = false,
® ®
/\ ~P /\ ~P
P T T P

» Works also for systems and different arities,

9/24

Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,"20) J

Expected size of reduction of uniform tree bounded, as size — co.

» |dea based on absorbing pattern P, e.g., false A (...) = false,
® ®
/\ ~P /\ ~P
P T T P
» Works also for systems and different arities,

Lr=|+S5,
Example : S v A
S:a—l—b—i—ﬁ/\ + N

rR Lr Lr Lr

9/24

Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,20) J

Expected size of reduction of uniform tree bounded, as size — co.

» |dea based on absorbing pattern P, e.g., false A (...) = false,
® ®
/\ ~ P /\ ~P
P T T P
» Works also for systems and different arities,

Lrp=|+S,
Example : S v A
S:a—l—b—i—ﬁ/\ +z:/\

r LR R LR

» For regular expressions on two letters, constant bound ~ 77.8.

9/24

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
To define an absorbing pattern we fix:

> an “operator” ® € Agyps with arity 2,

P an expression tree P in the family.

10/24

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
To define an absorbing pattern we fix:

» an “operator” ® € Agps with arity 2,

P an expression tree P in the family.

Simplify by applying bottom-up the rule:

®
/' \ ~ P, whenever C; = P for some i € {1,2}.
Ci Oy

10/24

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
To define an absorbing pattern we fix:

» an “operator” ® € Agps with arity 2,

P an expression tree P in the family.

Simplify by applying bottom-up the rule:

®
/' \ ~ P, whenever C; = P for some i € {1,2}.
Ci Oy

> Wide variety of examples:
*

V .

z

. + . xz+— 0
a b
operator V operator + operator X

> Weak hypothesis: in practice often several coexisting patterns !

10/24

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
To define an absorbing pattern we fix:

» an “operator” ® € Agps with arity 2,

P an expression tree P in the family.

Simplify by applying bottom-up the rule:

®
/' \ ~ P, whenever C; = P for some i € {1,2}.
Ci Oy

> Wide variety of examples:
*

V .

z

. + . xz+— 0
a b
operator V operator + operator X

> Weak hypothesis: in practice often several coexisting patterns !

10/24

Absorbing patters: simplifying the trees
Denote by o(T') = o(T,P,®) the simplification of 7.

11/24

Absorbing patters: simplifying the trees
Denote by o(T') = o(T,P,®) the simplification of 7.

Example: regular expressions (+,,%) on two letters a, b:
P = (a + b)* absorbing for union ® = +

/ AN , N
(/o =): o
T1 * * b * b
| /7 \ y \
+ b e b .
/ \ / \ / \
a b T o(Ty) o(Ty)

11/24

If we draw a random BST-like tree expression of size n:

» do we have the same flaw as uniform trees?

2L eft to right
1 5 19
7

(p*7p07p+) = (57 %, %)v(p*7p07p+) = (%7 29 E)x(p*ap07p+) = (%7 £

70)

=
o"‘
-

12/24

If we draw a random BST-like tree expression of size n:

» do we have the same flaw as uniform trees?
= we characterize 5 regimes

2L eft to right
1 5 19
7

(p*7p07p+) = (57 %, %)v(p*7p07p+) = (%7 29 E)x(p*ap07p+) = (%7 £

70)

=
o"‘
-

12/24

If we draw a random BST-like tree expression of size n:

» do we have the same flaw as uniform trees?
= we characterize 5 regimes

Experimental expected size (10 000 samples)? on regular expressions
(+,,%) on two letters a, b:
P = (a+ b)* absorbing for union ® = +

107 108

8,000
1r o
)
081 G 2 6,000,
g
3
0.6 & &
ERS 2 4,000
7 o0af i &
= Z et Z 2000}
S o2f s 3
L L : L . ol L L L L ol L L L L
02 04 06 08 110 0 0.2 0.4 0.6 08 1 10% 0 0.2 04 0.6 08 1 10°
size of the regular expression size of the regular expression size of the regular expression

2L eft to right
1 5 19
7

(P pes 1) = (3,5, 3). (P Do, 1) = (555 350 39) (P2 Do, 1) = (35, 150 15

70)

-
sl
-

12/24

Section

3. Result for BST-like trees and elements of the proof

Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ® of arity 2.

Take the simplification consisting in inductively changing a ®-node
by P whenever one of its children simplifies to P.

13/24

Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ® of arity 2.

Take the simplification consisting in inductively changing a ®-node
by P whenever one of its children simplifies to P.

Then the of the simplification of a random BST-like
tree has an asymptotic behaviour given by the following cases,
depending on the probability pg of the absorbing operator:

@(m) ©(logn)
O(n) O (n?) } o(1)

significant 3—p, degenerate 1
reduction 2 case

—_

0 almost no reduction

o= 4

13/24

Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ® of arity 2.

Take the simplification consisting in inductively changing a ®-node
by P whenever one of its children simplifies to P.

Then the of the simplification of a random BST-like
tree has an asymptotic behaviour given by the following cases,
depending on the probability pg of the absorbing operator:

@(m) ©(logn)
o(n) O (n?) e(1)

—_

significant 3—p, degenerate 1

0 almost no reduction) 1
reduction case

o= 4

» Probability pg of ®, and p| of picking unary operator.
» Two critical points pg = 1/2 and pg = (3 —p1)/4

> Regimes from no reduction ©(n) to complete reduction ©(1)

13/24

The main regimes experimentally

@(m) ©(logn)

O(n) o(n’) o(1)

1

—_

significant 3—p, degenerate 1

o= 4+

0 almost no reduction) 7}
reduction case

14/24

The main regimes experimentally

O(-2) ©(logn)

(logn)¥
O(n) o(n’) o(1)
0 almost no reduction % significant 3-p; degenerate

reduction 4 case

Experimental plots (10 000 samples)for regular expressions on two
letters a,b: P = (a + b)* absorbing for union ® = +

107, 100

8,000 7
= 1f =
£ 2
2 oo0sf 1 S 6 £ 6.000],
£ 06| I
2 4t Z 4,000
7 ooaf 7
kA 2} Z 2000}
S 02t S
. ol I . . . ol I . . .
0.2 04 06 0.8 110 0 0.2 0.4 0.6 08 1108 0 0.2 0.4 0.6 08 1
size of the regular expression size of the regular expression size of the regular expression

Figure: Left to right: linear (p; = p. = p. = 1), sublinear (p; = 37,

px =D. = 55) and constant (p4 = 5, px = p. = 15)-

14/24

Scheme of the proof: steps from Analytic combinatorics
We employ Analytic Combinatorics to study the expectation,

» Ordinary generating function

E(z):= Z ez,

n=0

encodes sequence e, := E,[o(T)].

15 /24

Scheme of the proof: steps from Analytic combinatorics
We employ Analytic Combinatorics to study the expectation,

» Ordinary generating function

o0
E(z):= Z ez,
n=0

encodes sequence e, := E,[o(T)].
» Symbolic Step. We find a formal equation describing E(z).

Here this will be an ordinary differential equation

E'(2)=B(2)+C(2)- E(2).

15 /24

Scheme of the proof: steps from Analytic combinatorics
We employ Analytic Combinatorics to study the expectation,

» Ordinary generating function

[e.e]
E(z) := Z ez,
n=0

encodes sequence e, := E,[o(T)].
» Symbolic Step. We find a formal equation describing E(z).

Here this will be an ordinary differential equation

E'(2)=B(2)+C(2)- E(2).
> Analytic Step. We look at E(z) over the complex z € C.

A Transfer Theorem links the behaviour of E(z) at its
dominant singularity to asymptotics of e,, = Study singularities

E(2) ~m1 M1 = 2) % = e, ~ An“ 1T (a)

15 /24

Symbolic step: fully reducible trees
An expression tree T is fully reducible when o(T) = P.

16 /24

Symbolic step: fully reducible trees
An expression tree T is fully reducible when o(T) = P.

Fully reducible expressions

» dictate the reduction process:
leaves of the reduced expression.

16/24

Symbolic step: fully reducible trees
An expression tree T is fully reducible when o(T) = P.

Fully reducible expressions

» dictate the reduction process:
leaves of the reduced expression.

» can also be specified recursively, e.g.,
*
: + +
P= + 5 R=P+_/\ + /\ .
e b R £ £ R

16/24

Symbolic step: fully reducible trees
An expression tree T is fully reducible when o(T') = P.

Fully reducible expressions

» dictate the reduction process:
leaves of the reduced expression.

» can also be specified recursively, e.g.,
*
: + +
P= + 5 R=P+_/\ + /\ .
e b R £ £ R

Yo :=Pr{c(T) =P}, A(z) := Zvnz",

of probabilities of full reduction and their generating function.

16/24

Symbolic step: recurrence for the expected value

We consider a fundamental sequence
Yo := Pr{o(T) =P},

of probabilities of full reduction.

17 /24

Symbolic step: recurrence for the expected value

We consider a fundamental sequence
Y = Pr{o(T) =P},

of probabilities of full reduction.

Recurrence for expected values

The recurrence for e, involves ~,,

En+1 = 1+(3 - 1)7n+11n+17és + pien

n—1 n—1

2pu Z j+ 2]0@ Z —sy)(

here p;j := 1 —p; — pg and s = |P|.

’777/7]))

17/24

Symbolic step: recurrence = differential equation
Recurrence yields first order differential equation

E'(2) = F(z A(2) + 125z (2 =P +2(1 = p1) 12— — 200 4(2)) - E(2),

1—-pz

in terms of A(z) =, vn2™.

18/24

Symbolic step: recurrence = differential equation
Recurrence yields first order differential equation

E'(2) = F(z A(2) + 125z (2 =P +2(1 = p1) 12— — 200 4(2)) - E(2),

1—-pz

in terms of A(z) =, vn2™.

Proof.
Differentiating we have E'(z) = > (n+ 1)e,2"™. DJ

18/24

Symbolic step: recurrence = differential equation
Recurrence yields first order differential equation

E'(2) = F(z,A) + 5 (2—pi+2(1 = p) 7=

1—-pz — 2

~2paA(2)) - E(2),

in terms of A(z) =, vn2™.

Proof.
Differentiating we have E’(z) = Y (n + 1)e,2™. DJ

First order differential equations can be solved explicitly

Proposition

The equation U'(z) = f(z) + g(2)U(z) where f, g are analytic functions
on (2 has a unique solution analytic on 2, satisfying U(0) = wuy,

v =ew ([a0c) (ot [screm (— / <g<w>cm> @)

V.

18/24

Symbolic step: recurrence = differential equation
Recurrence yields first order differential equation

E'(2) = F(z,A) + 5 (2—pi+2(1 = p) 7=

1—-pz — 2

~2paA(2)) - E(2),

in terms of A(z) =, vn2™.

Proof.
Differentiating we have E’(z) = Y (n + 1)e,2™. DJ

First order differential equations can be solved explicitly

Proposition

The equation U'(z) = f(z) + g(2)U(z) where f, g are analytic functions
on (2 has a unique solution analytic on 2, satisfying U(0) = wuy,

v =ew ([a0c) (ot [screm (— / <g<w>cm> @)

Our coefficients depend on z and the unkown generating function A(z).

V.

18/24

Analytic step: the singularity z =1

The generating functions A(z) and E(z)

> are analytic for |z| < 1, as the series converge absolutely.

19/24

Analytic step: the singularity z =1

The generating functions A(z) and E(z)
» are analytic for |z| < 1, as the series converge absolutely.

» have z = 1 as a dominant singularity: p =1 radius of
convergence.

19/24

Analytic step: the singularity z =1

The generating functions A(z) and E(z)
» are analytic for |z| < 1, as the series converge absolutely.

» have z = 1 as a dominant singularity: p =1 radius of
convergence.

Solution of ODE gives asymptotics

Cc

B ~ e (24 [Fld@)rwiae) 1) s o1,

where I(z) := exp (2]9@ Jo 114—(;1.% dw).

19/24

Analytic step: the singularity z =1

The generating functions A(z) and E(z)
» are analytic for |z| < 1, as the series converge absolutely.

» have z = 1 as a dominant singularity: p =1 radius of
convergence.

Solution of ODE gives asymptotics

Cc

B ~ e (24 [Fld@)rwiae) 1) s o1,

where I(z) := exp (2p® 7 A dw).

0 1—-pw

To apply the Transfer Theorem and complete the proof:
» we require precise asymptotics for A(z) at z =1,
» we show that A(z) and E(z) are analytic over = C\ [1, 00).

19/24

Fully reducible trees: probabilities

We study the generating function A(z) = > v,2"

Proposition: recurrence for 7,
The probabilities ~y,, = Pr,, {o(T) = P} satisfy, for n > |P|,

n—1

P
Tnt+1 = n—jal ;(’m + Yn—k = VkVn—k) -

20/24

Fully reducible trees: probabilities

We study the generating function A(z) = > v,2"

Proposition: recurrence for 7,
The probabilities ~y,, = Pr,, {o(T) = P} satisfy, for n > |P|,

n—1

p
Tnt+1 = n—jal ;(W + Yn—k = VkVn—k) -

Remark. If v, — 7Yoo, by Cesaro means 7o = pe - (2700 — 7).

20/24

Fully reducible trees: probabilities

We study the generating function A(z) = > v,2"
Proposition: recurrence for 7,
The probabilities 7, = Pr,, {o(T') = P} satisfy, for n > |P|,

n—1

p
Tnt+1 = nijal ;(’Yk + Yn—k = VkVn—k) -

Remark. If v, — 7Yoo, by Cesaro means 7o = pe - (2700 — 7).

Recurrence translates into Riccati differential equation

A = (5= 2+ (2 2o 5) 4G - (AP,

where s = |P| is the size of the absorbing pattern.

20/24

Behaviour of solutions of Riccati ODE
Considering v(2) such that pg A(2) = v/(2)/v(2),
Riccati equation becomes linear

V" (2) = pe - (5 — 2)7s2° Tu(2) + <z + 2pe 1 i z> v'(2).

21/24

Behaviour of solutions of Riccati ODE
Considering v(2) such that pg A(2) = v/(2)/v(2),
Riccati equation becomes linear

V" (2) = pe - (5 — 2)7s2° Tu(2) + <z + 2pe 1 & z> v'(2).

For linear ODEs:
» domain of analyticity well-understood.
P Frobenius method characterizes behaviour at singularities.

21/24

Behaviour of solutions of Riccati ODE
Considering v(2) such that pg A(2) = v/(2)/v(2),
Riccati equation becomes linear

V" (2) = pe - (5 — 2)7s2° Tu(2) + <z + 2pe 1 & z> v'(2).

For linear ODEs:

» domain of analyticity well-understood.

P Frobenius method characterizes behaviour at singularities.
Proposition
The generating function A(z) satisfies, z — 1

» For pg > % Az) = = +0((1 - z)?Pe=2),

A = % (s (125)) (10 (s () 7))

> For pg < 3, A(z) ~

» For pg =

N

D
(1—z2)*® "

where Yoo 1= (2pg — 1)/pe and D > 0 is a constant.

21/24

Probability of full reduction

Theorem

The probability v, of being fully reducible tends to the constant
Yoo := (2pe — 1)/pe for ps > % and to zero otherwise.

Moreover,
_ 1
» for ps = 5 we have v, ~ Togn’
> for pe < % Y ~ D -n2Pe~L

22/24

Probability of full reduction

Theorem
The probability v, of being fully reducible tends to the constant
Voo := (2pe — 1)/pe for pg > % and to zero otherwise.

Moreover,

> for py = % we have vy, ~ Togn’

> for pe < % Yp ~ Dol

v
wop e i
0.7 Vd
. I‘

Expernnental;ﬂot. 0o V
regular expressions on
two letters with] !

0.4 l‘ll

8 1 1 :
(p+7p07p*) - (70 » 10 ﬁ) 0.3 .
/
Then 02 e
. 0.1 ,"‘
lim ~, =3/4. -
n—00 0] o-e-teoraee-et’ "

22/24

Proof principles: analytic step — Frobenius method
Recall. From the Riccati equation, we have a 2nd order linear ODE

V'(2) = pe - (5 = 2752 M0(2) + (i + 207 z Z) v'(2),

and we want the behavior around z = 1 (false pole at z = 0).

23 /24

Proof principles: analytic step — Frobenius method
Recall. From the Riccati equation, we have a 2nd order linear ODE

V'(2) = pe - (5 = 2752 M0(2) + (% + 207 z z) v'(2),

and we want the behavior around z = 1 (false pole at z = 0).
Frobenius Method [Fuchs’ Theorem]

Let v/ (2) = %v(z) + %v’(z) with ¢(z) and p(z) analytic at z = 1.

23/24

Proof principles: analytic step — Frobenius method
Recall. From the Riccati equation, we have a 2nd order linear ODE

V'(2) = pe - (5 = 2752 M0(2) + (Z + 207 z Z) v'(2),

and we want the behavior around z = 1 (false pole at z = 0).
Frobenius Method [Fuchs’ Theorem]

Let v"(2) = (1q£zz))2v(z) + %v’(z) with ¢(z) and p(z) analytic at z = 1.

If v is a root of the indicial equation
X2 = (p(1) + 1)X +q(1),

there is h,(z) analytic at 1, ho(1) = 1, such that (1 — 2)%h,(2) is a
solution of the ODE.

23/24

Proof principles: analytic step — Frobenius method
Recall. From the Riccati equation, we have a 2nd order linear ODE

V) = o (5= Do) + (2 4 2) VG,

1—2z

and we want the behavior around z = 1 (false pole at z = 0).

Frobenius Method [Fuchs’ Theorem]

Let v"(2) = (1q£Zz))2v(z) + %v’(z) with ¢(z) and p(z) analytic at z = 1.
If v is a root of the indicial equation
X% = (p(1) + D)X +q(1),

there is h,(z) analytic at 1, ho(1) = 1, such that (1 — 2)%h,(2) is a
solution of the ODE.

Let a; and ao be the roots of the indicial equation.

23/24

Proof principles: analytic step — Frobenius method
Recall. From the Riccati equation, we have a 2nd order linear ODE

V'(2) = pe - (5 = 2752 M0(2) + (i + 207 z Z) v'(2),

and we want the behavior around z = 1 (false pole at z = 0).

Frobenius Method [Fuchs’ Theorem]

Let v"(2) = (1q£Zz))2v(z) + %v’(z) with ¢(z) and p(z) analytic at z = 1.
If v is a root of the indicial equation
X% = (p(1) + D)X +q(1),

there is h,(z) analytic at 1, ho(1) = 1, such that (1 — 2)%h,(2) is a
solution of the ODE.

Let a; and ao be the roots of the indicial equation.

> If ay — s € 7Z, solutions are linearly independent.

23/24

Proof principles: analytic step — Frobenius method
Recall. From the Riccati equation, we have a 2nd order linear ODE

V'(2) = pe - (5 = 2752 M0(2) + (i + 207 z z) v'(2),

and we want the behavior around z = 1 (false pole at z = 0).

Frobenius Method [Fuchs’ Theorem]

Let v"(2) = (1q£Zz))2v(z) + %v’(z) with ¢(z) and p(z) analytic at z = 1.
If v is a root of the indicial equation
X% = (p(1) + D)X +q(1),

there is h,(z) analytic at 1, ho(1) = 1, such that (1 — 2)%h,(2) is a
solution of the ODE.

Let a; and ao be the roots of the indicial equation.
> If ay — s € 7Z, solutions are linearly independent.

> If a; — ap € Z, factor (1 — z)l*1=22l is polynomial.

— to obtain independent solution multiply x log(1 — z).)
23 /24

Section

4. Conclusions

Conclusions and further work

Conclusions

® BST-like expression trees present a richer range of behaviours
than the uniform ones.

24 /24

Conclusions and further work

Conclusions

® BST-like expression trees present a richer range of behaviours
than the uniform ones.

® Not exempt of degenerate cases however
= tuning probabilities might be important.

24 /24

Conclusions and further work

Conclusions

® BST-like expression trees present a richer range of behaviours
than the uniform ones.

® Not exempt of degenerate cases however
= tuning probabilities might be important.

24 /24

Conclusions and further work

Conclusions

® BST-like expression trees present a richer range of behaviours
than the uniform ones.

® Not exempt of degenerate cases however
= tuning probabilities might be important.

Questions and further work

1. Absorbing operator ® of arity a > 3 7

24 /24

Conclusions and further work

Conclusions

® BST-like expression trees present a richer range of behaviours
than the uniform ones.

® Not exempt of degenerate cases however
= tuning probabilities might be important.

Questions and further work

1. Absorbing operator ® of arity a > 3 7
= expect similar results, threshold é instead of %

24 /24

Conclusions and further work

Conclusions

® BST-like expression trees present a richer range of behaviours
than the uniform ones.

® Not exempt of degenerate cases however
= tuning probabilities might be important.

Questions and further work

1. Absorbing operator ® of arity a > 3 7
= expect similar results, threshold é instead of %

2. Absorbing pattern model is
= consider interactions between operators?

24 /24

Conclusions and further work

Conclusions

® BST-like expression trees present a richer range of behaviours
than the uniform ones.

® Not exempt of degenerate cases however
= tuning probabilities might be important.

Questions and further work

1. Absorbing operator ® of arity a > 3 7
= expect similar results, threshold é instead of %

2. Absorbing pattern model is
= consider interactions between operators?

3. Take a concrete case: LTL formulas.

24 /24

References

@ Philippe Flajolet and Robert Sedgewick.
Analytic Combinatorics.
Cambridge University Press, Cambridge (2009).
https:
//algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html

@ Florent Koechlin, Cyril Nicaud, and Pablo Rotondo.
On the Degeneracy of Random Expressions Specified by Systems of
Combinatorial Equations.
Proceedings of DLT 2020, LNCS vol. 12086, pp 164-177.
https://doi.org/10.1007/978-3-030-48516-0_13

@ Florent Koechlin and Pablo Rotondo.
Analysis of an efficient reduction algorithm for random regular
expressions based on universality detection.
Proceedings of CSR 2021. LNCS, vol 12730. Springer.
https://doi.org/10.1007/978-3-030-79416-3_12

@ Florent Koechlin and Pablo Rotondo.

Absorbing patterns in BST-like expression-trees.
Proceedings of STACS 2021, LIPICs, vol.187, 48:1-48:15
https://doi.org/10.4230/LIPIcs.STACS.2021.48

24 /24

https://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html
https://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html
https://doi.org/10.1007/978-3-030-48516-0_13
https://doi.org/10.1007/978-3-030-79416-3_12
https://doi.org/10.4230/LIPIcs.STACS.2021.48

	Random BST-like tree model
	Semantic simplifications
	Result for BST-like trees and elements of the proof
	Conclusions

