Change of basis in Numeration Systems

Pablo Rotondo

LIGM, Université Gustave Eiffel

Based on joint work with Valérie Berthé, Eda Cesaratto and Martín D. Safe

Meeting EPA!, Buenos Aires, 23 October, 2024.

 \Rightarrow Only intervals containing $\frac{1}{3}$ and $\frac{2}{3}$ remain.

 \Rightarrow Only intervals containing $\frac{1}{3}$ and $\frac{2}{3}$ remain. Expected cost

$$\mathbb{E}[C] = \sum_{k \geq 0} \Pr(C > k) = 1 + \sum_{k \geq 1} \frac{2}{2^k} = 3 \text{ bits} \,. \label{eq:expectation}$$

• Given n binary digits $b_1, b_2, \ldots, b_n \in \{0, 1\}$ of

$$x = (0.b_1b_2\ldots)_2 \in [0,1].$$

Number $L = L_n(x)$ of *d*-ary digits $0 \le d_1, \ldots, d_L < d$ deduced?

$$x = (0.d_1d_2...)_d \in [0,1].$$

^{*}This will be true!

• Given n binary digits $b_1, b_2, \ldots, b_n \in \{0, 1\}$ of

$$x = (0.b_1b_2\ldots)_2 \in [0,1].$$

▶ Number $L = L_n(x)$ of *d*-ary digits $0 \le d_1, \ldots, d_L < d$ deduced?

$$x = (0.d_1d_2...)_d \in [0,1].$$

Answer:

• For $d = 2^A$ we simply obtain

$$L_n(x) = n/A \,,$$

because 1 d-ary digit corresponds to A binary digits.

^{*}This will be true!

• Given n binary digits $b_1, b_2, \ldots, b_n \in \{0, 1\}$ of

$$x = (0.b_1b_2\ldots)_2 \in [0,1].$$

▶ Number $L = L_n(x)$ of *d*-ary digits $0 \le d_1, \ldots, d_L < d$ deduced?

$$x = (0.d_1d_2...)_d \in [0,1].$$

Answer:

$$L_n(x) = n/A \,,$$

because 1 d-ary digit corresponds to A binary digits.

More generally we expect *

$$(\log d) \times L_n(x) \sim (\log 2) \times n$$
.

^{*}This will be true!

• Given n binary digits $b_1, b_2, \ldots, b_n \in \{0, 1\}$ of

$$x = (0.b_1b_2\ldots)_2 \in [0,1].$$

▶ Number $L = L_n(x)$ of *d*-ary digits $0 \le d_1, \ldots, d_L < d$ deduced?

$$x = (0.d_1d_2...)_d \in [0,1].$$

Answer:

• For $d = 2^A$ we simply obtain

$$L_n(x) = n/A \,,$$

because 1 d-ary digit corresponds to A binary digits.

More generally we expect *

$$(\log d) \times L_n(x) \sim (\log 2) \times n$$
.

One digit in base d^L "corresponds" to one in base 2^n if $d^L \approx 2^n$.

^{*}This will be true!

Motivation: simulating Sturmian words

Sturmian words. discrete coding of lines: horizontal (0), vertical (1) steps

Motivation: simulating Sturmian words

Sturmian words. discrete coding of lines: horizontal (0), vertical (1) steps

Theorem (Morse, Hedlund '40)

Binary sequence (u_k) is Sturmian iff there is an irrational $\alpha \in (0,1)$ and $\beta \in [0,1)$ such that for all $k \ge 0$,

$$u_k = \lfloor (k+1)\alpha + \beta \rfloor - \lfloor k\alpha + \beta \rfloor.$$

The irrational α is known as the slope.

Motivation: simulating Sturmian words

Sturmian words. discrete coding of lines: horizontal (0), vertical (1) steps

Theorem (Morse, Hedlund '40)

Binary sequence (u_k) is Sturmian iff there is an irrational $\alpha \in (0,1)$ and $\beta \in [0,1)$ such that for all $k \ge 0$,

$$u_k = \lfloor (k+1)\alpha + \beta \rfloor - \lfloor k\alpha + \beta \rfloor.$$

The irrational α is known as the slope.

Remark The parameters $\alpha \in [0,1) \setminus \mathbb{Q}$ and $\beta \in [0,1)$ are unique !

Question. if we have approximation of α , and $\beta = 0^{\dagger}$, how many *Sturm* digits (u_k) of α are deduced?

This is naturally the case in computer simulations!

[†]This is known as the *characteristic Sturmian word* of slope α .

Question. if we have approximation of α , and $\beta = 0^{\dagger}$, how many *Sturm* digits (u_k) of α are deduced?

This is naturally the case in computer simulations!

Remark. First difference: one line above $(a, b) \in \mathbb{Z}^2$ while other below:

[†]This is known as the *characteristic Sturmian word* of slope α .

Question. if we have approximation of α , and $\beta = 0^{\dagger}$, how many *Sturm* digits (u_k) of α are deduced?

This is naturally the case in computer simulations!

Remark. First difference: one line above $(a, b) \in \mathbb{Z}^2$ while other below: \implies rational $a/b \in [\alpha_2, \alpha_1]$ implies $u_{b-1}^{\langle \alpha_2 \rangle} = 0, u_{b-1}^{\langle \alpha_1 \rangle} = 1.$

[†]This is known as the *characteristic Sturmian word* of slope α .

Plan of the talk

- 1. Unidimensional partitions of positive entropy
- 2. Undimensional partitions with zero entropy
- 3. Farey partition: zero entropy partitions for Sturmian digits
- 4. Bidimensional partitions
- 5. Conclusions and other work

Section

1. Unidimensional partitions of positive entropy

- 2. Undimensional partitions with zero entropy
- 3. Farey partition: zero entropy partitions for Sturmian digits
- 4. Bidimensional partitions
- 5. Conclusions and other work

First historical results: Lochs' Theorem

• Given n decimal digits d_1, d_2, \ldots, d_n of $x \in [0, 1]$,

$$x = (0.d_1d_2\ldots)_{10} \in [0,1].$$

Number $L_n(x)$ of CFE-digits (partial quotients) deduced without error ?

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}.$$

First historical results: Lochs' Theorem

• Given n decimal digits d_1, d_2, \ldots, d_n of $x \in [0, 1]$,

$$x = (0.d_1d_2\ldots)_{10} \in [0,1].$$

Number $L_n(x)$ of CFE-digits (partial quotients) deduced without error ?

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}}$$

Theorem (Lochs '64)

The rate of CF-digits per decimal given satisfies

$$\lim_{\mathbf{d} \to \infty} \frac{L_n(x)}{n} = \frac{6 \log 2 \log 10}{\pi^2} \doteq 0.9702701 \dots \,,$$

for almost every x.

First historical results: Lochs' Theorem

• Given n decimal digits d_1, d_2, \ldots, d_n of $x \in [0, 1]$,

$$x = (0.d_1d_2\ldots)_{10} \in [0,1].$$

Number $L_n(x)$ of CFE-digits (partial quotients) deduced without error ?

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \ddots}}$$

Theorem (Lochs '64)

The rate of CF-digits per decimal given satisfies

$$\lim_{\mathbf{d} \to \infty} \frac{L_n(x)}{n} = \frac{6 \log 2 \log 10}{\pi^2} \doteq 0.9702701 \dots \,,$$

for almost every x.

"Example". The first 1000 decimals of π determine exactly 968 partial quotients of π .

Associated partitions $\mathcal{D} = (\mathcal{D}_n)$ for the decimal expansion:

$$\mathcal{D}_n = \left\{ \left(\frac{k}{10^n}, \frac{k+1}{10^n} \right) : k \in \{0, 1, \dots, 10^n - 1\} \right\}.$$

Associated partitions $\mathcal{D} = (\mathcal{D}_n)$ for the decimal expansion:

$$\mathcal{D}_n = \left\{ \left(\frac{k}{10^n}, \frac{k+1}{10^n} \right) : k \in \{0, 1, \dots, 10^n - 1\} \right\}.$$

Intervals determine expansion up to depth n:

$$x \in ((0.d_1...d_n)_{10}, (0.d_1...d_n)_{10} + 10^{-n}),$$

implies that expansion is $x = (0.d_1d_2...d_nc_{n+1}c_{n+2}...)_{10}$.

Associated partitions $\mathcal{D} = (\mathcal{D}_n)$ for the decimal expansion:

$$\mathcal{D}_n = \left\{ \left(\frac{k}{10^n}, \frac{k+1}{10^n} \right) : k \in \{0, 1, \dots, 10^n - 1\} \right\}.$$

Intervals determine expansion up to depth n:

$$x \in ((0.d_1...d_n)_{10}, (0.d_1...d_n)_{10} + 10^{-n}),$$

implies that expansion is $x = (0.d_1d_2...d_nc_{n+1}c_{n+2}...)_{10}$.

Definition (System of interval partitions)

Sequence of (open) interval partitions $\mathcal{P} = (\mathcal{P}_n)$ of [0,1]

$$\mathcal{P}_{n+1}$$
 refinement of \mathcal{P}_n for every n.

▶
$$\|\mathcal{P}_n\| = \sup\{\mathtt{diam}(I) : I \in \mathcal{P}_n\}$$
 tends to 0.

Associated partitions $\mathcal{D} = (\mathcal{D}_n)$ for the decimal expansion:

$$\mathcal{D}_n = \left\{ \left(\frac{k}{10^n}, \frac{k+1}{10^n} \right) : k \in \{0, 1, \dots, 10^n - 1\} \right\}.$$

Intervals determine expansion up to depth n:

$$x \in ((0.d_1...d_n)_{10}, (0.d_1...d_n)_{10} + 10^{-n}),$$

implies that expansion is $x = (0.d_1d_2...d_nc_{n+1}c_{n+2}...)_{10}$.

Definition (System of interval partitions)

Sequence of (open) interval partitions $\mathcal{P} = (\mathcal{P}_n)$ of [0,1]

•
$$\mathcal{P}_{n+1}$$
 refinement of \mathcal{P}_n for every n

•
$$\|\mathcal{P}_n\| = \sup\{\operatorname{diam}(I) : I \in \mathcal{P}_n\}$$
 tends to 0.

Model for numeration systems: more generally,

• notation
$$I_n^{\mathcal{P}}(x) = I \in \mathcal{P}_n$$
 such that $x \in I$,

• first *n* symbols for *x* determine $I_n^{\mathcal{P}}(x)$ and conversely.

Entropy of a partition

Entropy dictates size of intervals

► Shannon entropy[‡]:

$$H(\mathcal{P}) = -\lim_{k \to \infty} \frac{1}{k} \sum_{I \in \mathcal{P}_k} |I| \log |I| .$$

► *Point-wise entropy*: for almost every *x*

$$h(\mathcal{P}) = -\lim_{k \to \infty} \frac{1}{k} \log \left| I_k^{\mathcal{P}}(x) \right| \,.$$

[‡]We consider Lebesgue measure here, but any Borel λ works.

Entropy of a partition

Entropy dictates size of intervals

► Shannon entropy[‡]:

$$H(\mathcal{P}) = -\lim_{k \to \infty} \frac{1}{k} \sum_{I \in \mathcal{P}_k} |I| \log |I| .$$

► *Point-wise entropy*: for almost every *x*

$$h(\mathcal{P}) = -\lim_{k \to \infty} \frac{1}{k} \log \left| I_k^{\mathcal{P}}(x) \right| \,.$$

Connection: if both are defined...

$$H(\mathcal{P}) = -\lim_{k \to \infty} \mathbb{E}\left[\frac{1}{k} \log \left|I_k^{\mathcal{P}}(x)\right|\right], \quad h(\mathcal{P}) = -\mathbb{E}\left[\lim_{k \to \infty} \frac{1}{k} \log \left|I_k^{\mathcal{P}}(x)\right|\right].$$

[‡]We consider Lebesgue measure here, but any Borel λ works.

Entropy of a partition

Entropy dictates size of intervals

► Shannon entropy[‡]:

$$H(\mathcal{P}) = -\lim_{k \to \infty} \frac{1}{k} \sum_{I \in \mathcal{P}_k} |I| \log |I| .$$

► *Point-wise entropy*: for almost every *x*

$$h(\mathcal{P}) = -\lim_{k \to \infty} \frac{1}{k} \log \left| I_k^{\mathcal{P}}(x) \right| \,.$$

Connection: if both are defined...

$$H(\mathcal{P}) = -\lim_{k \to \infty} \mathbb{E}\left[\frac{1}{k} \log \left|I_k^{\mathcal{P}}(x)\right|\right], \quad h(\mathcal{P}) = -\mathbb{E}\left[\lim_{k \to \infty} \frac{1}{k} \log \left|I_k^{\mathcal{P}}(x)\right|\right].$$

Remark. By Fatou's Lemma $h(\mathcal{P}) \leq H(\mathcal{P})$ if both exist.

[‡]We consider Lebesgue measure here, but any Borel λ works.

Existence of point-wise entropy

Systems of partitions associated with good (positive entropy) dynamical systems have point-wise entropy:

Theorem (Shannon, McMillan, Breiman)

Let T be an ergodic measure preserving transformation on a probability space $(\Omega, \mathcal{B}, \mu)$ and let P be a finite or countable generating partition for T for which $H_{\mu}(P) < \infty$. Then for μ -a.e. x,

$$\lim_{n \to \infty} -\frac{\log \mu \left(P_n(x) \right)}{n} = h_\mu(T) \,.$$

Here $H_{\mu}(P)$ denotes the entropy of the partition P, $h_{\mu}(T)$ the entropy of T and $P_n(x)$ denotes the element of the partition $\bigvee_{i=0}^{n-1} T^{-i}P$ containing x.

Generalization Lochs': Lochs' index

The Lochs' index

- formalizes the notation of deduced digits,
- generalizes it to systems of interval partitions.

Generalization Lochs': Lochs' index

The Lochs' index

- formalizes the notation of deduced digits,
- generalizes it to systems of interval partitions.

Lochs' index for systems of partitions $\mathcal{P}^1, \mathcal{P}^2$

$$L_n(x; \mathcal{P}^1, \mathcal{P}^2) := \sup\{m \ge 0 : I_n^{\mathcal{P}^1}(x) \subset I_m^{\mathcal{P}^2}(x)\},\$$

depth in \mathcal{P}^2 deduced from depth n in \mathcal{P}^1 .

Generalization Lochs': Lochs' index

The Lochs' index

- formalizes the notation of deduced digits,
- generalizes it to systems of interval partitions.

Lochs' index for systems of partitions $\mathcal{P}^1, \mathcal{P}^2$

$$L_n(x; \mathcal{P}^1, \mathcal{P}^2) := \sup\{m \ge 0 : I_n^{\mathcal{P}^1}(x) \subset I_m^{\mathcal{P}^2}(x)\},\$$

depth in \mathcal{P}^2 deduced from depth n in \mathcal{P}^1 .

Explanation

If $I_n^{\mathcal{P}^1}(x)$ splits over (intersects) several $J \in \mathcal{P}_m^2$, \implies we cannot yet decide on $I_m^{\mathcal{P}^2}(x)$

Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 , with positive point-wise entropies $h(\mathcal{P}^1)$ and $h(\mathcal{P}^2)$. Then

$$\lim_{n \to \infty} \frac{1}{n} L_n(x; \mathcal{P}^1, \mathcal{P}^2) = \frac{h(\mathcal{P}^1)}{h(\mathcal{P}^2)}$$

for a.e. x.

Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 , with positive point-wise entropies $h(\mathcal{P}^1)$ and $h(\mathcal{P}^2)$. Then

$$\lim_{n \to \infty} \frac{1}{n} L_n(x; \mathcal{P}^1, \mathcal{P}^2) = \frac{h(\mathcal{P}^1)}{h(\mathcal{P}^2)}$$

for a.e. x.

We deduce Lochs' Theorem and result for *d*-ary basis:

Base d. Since
$$|I_n^{\mathcal{D}}(x)| = d^{-n}$$
, $h(\mathcal{D}) = \log d$.

Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 , with positive point-wise entropies $h(\mathcal{P}^1)$ and $h(\mathcal{P}^2)$. Then

$$\lim_{n \to \infty} \frac{1}{n} L_n(x; \mathcal{P}^1, \mathcal{P}^2) = \frac{h(\mathcal{P}^1)}{h(\mathcal{P}^2)}$$

for a.e. x.

We deduce Lochs' Theorem and result for *d*-ary basis:

- **Base** d. Since $|I_n^{\mathcal{D}}(x)| = d^{-n}$, $h(\mathcal{D}) = \log d$.
- Continued fractions. Entropy $h(\mathcal{C}) = \frac{\pi^2}{6 \log 2}$

Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 , with positive point-wise entropies $h(\mathcal{P}^1)$ and $h(\mathcal{P}^2)$. Then

$$\lim_{n \to \infty} \frac{1}{n} L_n(x; \mathcal{P}^1, \mathcal{P}^2) = \frac{h(\mathcal{P}^1)}{h(\mathcal{P}^2)}$$

for a.e. x.

Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 , with positive point-wise entropies $h(\mathcal{P}^1)$ and $h(\mathcal{P}^2)$. Then

$$\lim_{n \to \infty} \frac{1}{n} L_n(x; \mathcal{P}^1, \mathcal{P}^2) = \frac{h(\mathcal{P}^1)}{h(\mathcal{P}^2)}$$

for a.e. x.

What if $h(\mathcal{P}_1) = 0$ or $h(\mathcal{P}_2) = 0$? e.g., Sturm digits (u_k)

- If $h(\mathcal{P}_2) = 0$ and $h(\mathcal{P}_1) > 0$, almost surely $L/t \to \infty$.

– If $h(\mathcal{P}_2) > 0$ and $h(\mathcal{P}_1) = 0$, almost surely $L/t \to 0$.

Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 , with positive point-wise entropies $h(\mathcal{P}^1)$ and $h(\mathcal{P}^2)$. Then

$$\lim_{n \to \infty} \frac{1}{n} L_n(x; \mathcal{P}^1, \mathcal{P}^2) = \frac{h(\mathcal{P}^1)}{h(\mathcal{P}^2)}$$

for a.e. x.

What if $h(\mathcal{P}_1) = 0$ or $h(\mathcal{P}_2) = 0$? e.g., Sturm digits (u_k)

- If $h(\mathcal{P}_2) = 0$ and $h(\mathcal{P}_1) > 0$, almost surely $L/t \to \infty$.

- If $h(\mathcal{P}_2) > 0$ and $h(\mathcal{P}_1) = 0$, almost surely $L/t \to 0$.

In our work [BCRS'23] we generalize this result to zero entropy...

- 1. Unidimensional partitions of positive entropy
- 2. Undimensional partitions with zero entropy
- 3. Farey partition: zero entropy partitions for Sturmian digits
- 4. Bidimensional partitions
- 5. Conclusions and other work
Log-balancedness and weight function

Definition (Weight function)

A system of partitions $\mathcal{P} = (\mathcal{P}_n)$ is *log-balanced* a.e. (resp. in measure) with *weight function* $f \colon \mathbb{N} \to \mathbb{R}_{>0}$, $f(n) \to \infty$, if

$$-\log|I_n^{\mathcal{P}}(x)| \sim f(n) \,,$$

almost everywhere (resp. in measure).

Log-balancedness and weight function

Definition (Weight function)

A system of partitions $\mathcal{P} = (\mathcal{P}_n)$ is *log-balanced* a.e. (resp. in measure) with *weight function* $f \colon \mathbb{N} \to \mathbb{R}_{>0}$, $f(n) \to \infty$, if

$$-\log|I_n^{\mathcal{P}}(x)| \sim f(n),$$

almost everywhere (resp. in measure).

Example

For positive entropy
$$h = h(\mathcal{P}) > 0$$

$$f(n) = h \times n \,.$$

▶ If partition is log-balanced, entropy 0 corresponds to

$$f(n) = o(n) \, .$$

Result for zero entropy

Theorem (Berthé, Cesaratto, R., Safe, 2023) Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 , with a.e. weight functions f_1 and f_2 . Then, under certain technical conditions

$$\lim_{n \to \infty} \frac{f_2\left(L_n(x; \mathcal{P}^1, \mathcal{P}^2)\right)}{f_1(n)} = 1,$$

for a.e. x.

Result for zero entropy

Theorem (Berthé, Cesaratto, R., Safe, 2023) Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 , with a.e. weight functions f_1 and f_2 . Then, under certain technical conditions

$$\lim_{n \to \infty} \frac{f_2\left(L_n(x; \mathcal{P}^1, \mathcal{P}^2)\right)}{f_1(n)} = 1,$$

for a.e. x.

The conditions are:

•
$$\sum e^{-\delta f_1(n)} < \infty$$
 for every $\delta > 0$;

• f_2 is non decreasing ;

▶
$$f_2(n+1) - f_2(n) = o(f_2(n))$$
 as $n \to \infty$.

$$(a) \ \sum e^{-\delta f_1(n)} < \infty \ \text{for every} \ \delta > 0;$$

(b) f_2 is non decreasing ;

(c)
$$f_2(n+1) - f_2(n) = o(f_2(n))$$
 as $n \to \infty$.

(a)
$$\sum e^{-\delta f_1(n)} < \infty$$
 for every $\delta > 0$;

(b) f_2 is non decreasing ;

 $(c) \hspace{0.2cm} f_2(n+1) - f_2(n) = o(f_2(n)) \hspace{0.2cm} \text{as} \hspace{0.2cm} n \rightarrow \infty.$

Intuitively, the first condition is the most constraining one:

- Condition (b) reflects the fact that \mathcal{P}_2 is refining ;
- Condition (c) means that $f_2(n+1) \sim f_2(n)$;
- Condition (a) tells us that $f_1(n)$ grows not too slowly

(a)
$$\sum e^{-\delta f_1(n)} < \infty$$
 for every $\delta > 0$;

(b) f_2 is non decreasing ;

 $(c) \ f_2(n+1) - f_2(n) = o(f_2(n)) \text{ as } n \to \infty.$

Intuitively, the first condition is the most constraining one:

- Condition (b) reflects the fact that \mathcal{P}_2 is refining ;
- Condition (c) means that $f_2(n+1) \sim f_2(n)$;
- Condition (a) tells us that $f_1(n)$ grows not too slowly

Examples

- Condition (a) not satisfied when $f_1(n) = \log n$,
- Condition (a) satisfied for $f_1(n) \ge (\log n)^2$.

(a)
$$\sum e^{-\delta f_1(n)} < \infty$$
 for every $\delta > 0$;

(b) f_2 is non decreasing ;

 $(c) \ f_2(n+1) - f_2(n) = o(f_2(n)) \text{ as } n \to \infty.$

Intuitively, the first condition is the most constraining one:

- Condition (b) reflects the fact that \mathcal{P}_2 is refining ;
- Condition (c) means that $f_2(n+1) \sim f_2(n)$;
- Condition (a) tells us that $f_1(n)$ grows not too slowly

Examples

- Condition (a) not satisfied when $f_1(n) = \log n$,
- Condition (a) satisfied for $f_1(n) \ge (\log n)^2$.
- Condition (c) not satisfied when $f_2(n) = \exp(n)$,
- Condition (c) is satisfied when $f_2(n) = \exp(\sqrt{n})$.

Discussion: conditions of our result for zero entropy

Example: appropriate output partitions \mathcal{P}_2 Subexponential weight functions of the form

 $f_2(n) = \exp(g(n))\,,$

with $g'(t) \searrow 0$.

Discussion: conditions of our result for zero entropy

Example: appropriate output partitions \mathcal{P}_2 Subexponential weight functions of the form

 $f_2(n) = \exp(g(n))\,,$

with $g'(t) \searrow 0$.

Example: appropriate input partitions \mathcal{P}_1

Superlogarithmic weight functions

$$f_1(n) = (\log n) \cdot g(n) \,,$$

with $g(t) \to \infty$.

1. Unidimensional partitions of positive entropy

2. Undimensional partitions with zero entropy

3. Farey partition: zero entropy partitions for Sturmian digits

4. Bidimensional partitions

5. Conclusions and other work

A zero entropy system for Sturmian digits

Farey partition (Sturm source) is built by splitting intervals at *mediant*

 $\texttt{mediant}(a/b,c/d):=(a+b)/(c+d)\,.$

A zero entropy system for Sturmian digits

Farey partition (Sturm source) is built by splitting intervals at *mediant*

$$\texttt{mediant}(a/b,c/d):=(a+b)/(c+d)\,.$$

Construction of the Farey partition \mathcal{F}_n :

• Base case:
$$\mathcal{F}_0 = \{[0,1]\}.$$

▶ Building \mathcal{F}_n : split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{n-1}$ at mediant $\frac{a+c}{b+d}$, if $b+d \leq n+1$.

A zero entropy system for Sturmian digits

Farey partition (Sturm source) is built by splitting intervals at *mediant*

$$\operatorname{mediant}(a/b,c/d) := (a+b)/(c+d)$$
.

Construction of the Farey partition \mathcal{F}_n :

• Base case:
$$\mathcal{F}_0 = \{[0,1]\}.$$

▶ Building \mathcal{F}_n : split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{n-1}$ at mediant $\frac{a+c}{b+d}$, if $b+d \leq n+1$.

Farey partition: natural zero entropy system with weight

Farey partition \mathcal{F}_n :

• Base case: $\mathcal{F}_0 = \{[0,1]\}.$

▶ Building \mathcal{F}_n : split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{n-1}$ at mediant $\frac{a+c}{b+d}$, if $b+d \leq n+1$.

Properties:

- \mathcal{F}_k determines[§] char. Sturmian word up to u_k : prefix $u_0 \dots u_k$.
- The end-points \mathcal{F}_k are exactly $\{\frac{a}{b} \in \mathbb{Q} : 0 \le a \le b \le k+1\}$.
- Small number: $\Theta(k^2)$ intervals in \mathcal{F}_k

[§]We are forcing a slope $\alpha \in (0, 1)$, i.e., $u_0 = 0$ always as $\beta = 0$.

Farey partition: natural zero entropy system with weight

Farey partition \mathcal{F}_n :

• Base case: $\mathcal{F}_0 = \{[0,1]\}.$

▶ Building \mathcal{F}_n : split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{n-1}$ at mediant $\frac{a+c}{b+d}$, if $b+d \leq n+1$.

Properties:

- \mathcal{F}_k determines[§] char. Sturmian word up to u_k : prefix $u_0 \dots u_k$.
- The end-points \mathcal{F}_k are exactly $\{\frac{a}{b} \in \mathbb{Q} : 0 \le a \le b \le k+1\}$.
- Small number: $\Theta(k^2)$ intervals in $\mathcal{F}_k \Rightarrow$ Shannon entropy 0.

[§]We are forcing a slope $\alpha \in (0, 1)$, i.e., $u_0 = 0$ always as $\beta = 0$.

Weight of the Farey partition

Proposition

Farey partition is log-balanced a.e. with weight-function $f(n) = 2 \log n$.

Weight of the Farey partition

Proposition

Farey partition is log-balanced a.e. with weight-function $f(n) = 2 \log n$.

Farey intervals have comparable size almost everywhere:

Lemma

For almost every x, for large $n \ge n_0(x)$

$$\frac{1}{n^2} \le \left| I_n^{\mathcal{F}}(x) \right| \le \frac{(\log n)(\log \log n)}{n^2}$$

Figure. Histogram of interval sizes for n = 20. $\frac{1}{20^2} = 0.0025$, $\frac{1}{20} = 0.05$.

Consequences: producing digits of Sturmian word

From n digits of the slope α , we deduce *exponentially many*:

Corollary: from binary to Farey

Let ${\mathcal F}$ be the Farey partition, then

$$\log L_n(x; \mathcal{B}, \mathcal{F}) \sim \frac{\log 2}{2} \times n$$
,

almost everywhere.

Consequences: producing digits of Sturmian word

From n digits of the slope α , we deduce *exponentially many*:

Corollary: from binary to Farey

Let ${\mathcal F}$ be the Farey partition, then

$$\log L_n(x; \mathcal{B}, \mathcal{F}) \sim \frac{\log 2}{2} \times n$$
,

almost everywhere.

Proof.

For the input $f_1(n) = (\log 2) \times n$, for the output $f_2(m) = 2 \log m$.

Consequences: producing digits of Sturmian word

From n digits of the slope α , we deduce *exponentially many*:

Corollary: from binary to Farey

Let ${\mathcal F}$ be the Farey partition, then

$$\log L_n(x; \mathcal{B}, \mathcal{F}) \sim \frac{\log 2}{2} \times n$$
,

almost everywhere.

Proof.

For the input $f_1(n) = (\log 2) \times n$, for the output $f_2(m) = 2 \log m$.

Corollary

Let ${\mathcal P}$ with $h({\mathcal P})>0$ and ${\mathcal F}$ be the Farey partition, then

$$\log L_n(x; \mathcal{P}, \mathcal{F}) \sim \frac{h(\mathcal{P})}{2} \times n$$

almost everywhere.

- 1. Unidimensional partitions of positive entropy
- 2. Undimensional partitions with zero entropy
- 3. Farey partition: zero entropy partitions for Sturmian digits
- 4. Bidimensional partitions
- 5. Conclusions and other work

 \blacktriangleright Previous results apply to sequences of one-dimensional partitions, these encode $x \in [0,1]$

- Previous results apply to sequences of one-dimensional partitions, these encode $x \in [0, 1]$
- ▶ In two dimensions we encode a pair $(x, y) \in [0, 1] \times [0, 1]$. ⇒ need not treat x and y independently !

- Previous results apply to sequences of one-dimensional partitions, these encode $x \in [0, 1]$
- ▶ In two dimensions we encode a pair $(x, y) \in [0, 1] \times [0, 1]$. ⇒ need not treat x and y independently !
- Theorem (Dajani, De Vries, Johnson 2005)

Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 of the square $[0,1]^2$ satisfying

- (i) \mathcal{P}^1 is made out of squares.
- (ii) \mathcal{P}^2 consisting of convex polygons, of pointwise entropy $h(\mathcal{P}^2) > 0$.
- (iii) There are constants β , $c_0, c_1 > 0$ so that, for every I from a partition in \mathcal{P}^2 , $c_0\lambda(I) \leq (diam(I))^{\beta} \leq c_1\lambda(I)$.

Then, for a.e. $(x,y)\in [0,1]^2$,

$$\lim_{n \to \infty} \frac{1}{n} L_n(x, y; \mathcal{P}^1, \mathcal{P}^2) = \frac{\beta}{2(\beta - 1)} \frac{h(\mathcal{P}^1)}{h(\mathcal{P}^2)}.$$

Theorem (Dajani, De Vries, Johnson 2005) Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 of the square $[0,1]^2$ satisfying (i) \mathcal{P}^1 is made out of squares. (ii) (...) Then, for a.e. $(x,y) \in [0,1]^2$, $\lim_{n \to \infty} \frac{1}{n} L_n(x,y;\mathcal{P}^1,\mathcal{P}^2) = \frac{\beta}{2(\beta-1)} \frac{h(\mathcal{P}^1)}{h(\mathcal{P}^2)}.$

... what about non-squares ? ... what about non-polygons ?

Theorem (Dajani, De Vries, Johnson 2005) Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 of the square $[0,1]^2$ satisfying (i) \mathcal{P}^1 is made out of squares. (ii) (...) Then, for a.e. $(x, y) \in [0,1]^2$,

$$\lim_{n \to \infty} \frac{1}{n} L_n(x, y; \mathcal{P}^1, \mathcal{P}^2) = \frac{\beta}{2(\beta - 1)} \frac{h(\mathcal{P}^1)}{h(\mathcal{P}^2)}.$$

... what about non-squares ? ... what about non-polygons ?

Work in progress [BCRS]

Under suitable balance conditions we can go from \mathcal{P}^1 to a partition \mathcal{P}^2 made out of squares.

Theorem (Dajani, De Vries, Johnson 2005) Consider systems of partitions \mathcal{P}^1 and \mathcal{P}^2 of the square $[0,1]^2$ satisfying (i) \mathcal{P}^1 is made out of squares. (ii) (...) Then, for a.e. $(x,y) \in [0,1]^2$,

$$\lim_{n \to \infty} \frac{1}{n} L_n(x, y; \mathcal{P}^1, \mathcal{P}^2) = \frac{\beta}{2(\beta - 1)} \frac{h(\mathcal{P}^1)}{h(\mathcal{P}^2)}.$$

... what about non-squares ? ... what about non-polygons ?

Work in progress [BCRS]

Under suitable balance conditions we can go from \mathcal{P}^1 to a partition \mathcal{P}^2 made out of squares. \Longrightarrow Log-balanced measures and diameters.

Example of interest: Ostrowski expansion

Ostrowski transformation

Given irrationals $x,y\in [0,1]$ define

 $S(x,y) = \left(\left\{ 1/x \right\}, \left\{ y/x \right\} \right) \,,$

where $\{t\} := t - \lfloor t \rfloor$ is the fractional part.

Example of interest: Ostrowski expansion

Ostrowski transformation

Given irrationals $x, y \in [0, 1]$ define

 $S(x,y) = \left(\left\{ 1/x \right\}, \left\{ y/x \right\} \right) \,,$

where $\{t\} := t - \lfloor t \rfloor$ is the fractional part.

Digits are produced at each iteration $i \ge 1$ by (x_i, y_i)

$$a_i = \lfloor 1/x_i \rfloor, \qquad b_i = \lfloor y_i/x_i \rfloor.$$

We retrieve (x, y) by

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}, \qquad y = \sum_{i=1}^{\infty} b_i \cdot x_0 \dots x_{i-1}.$$

Partitions: Ostrowski expansion

1 a=1,b=10.8 -0.8 = 2, b = 10.6 0.6 -0.4 0.4 a = 1, b = 0a = 2, b = 00.2 0.2 -0 -0 -0.6 0.2 0.4 0.6 0.8 ດ່າ 0.4 0.8 1

Partition \mathcal{P}_1 according to (a_1, b_1) and \mathcal{P}_2 according to (a_1, b_1, a_2, b_2) .

- 1. Unidimensional partitions of positive entropy
- 2. Undimensional partitions with zero entropy
- 3. Farey partition: zero entropy partitions for Sturmian digits
- 4. Bidimensional partitions
- 5. Conclusions and other work

- \circledast Possible to have meaningful information for zero entropy \Rightarrow results also work for *infinite* entropy.
- \circledast Results apply for almost every x,

 \Rightarrow what about *my* slope α ?

- \circledast Possible to have meaningful information for zero entropy \Rightarrow results also work for *infinite* entropy.
- \circledast Results apply for almost every x,

 \Rightarrow what about *my* slope α ? if CF-digits satisfy $\log a_k(\alpha) = o(k)$,

$$\log L_n(\alpha; \mathcal{B}, \mathcal{F}) \le \frac{\log 2}{2}n + o(n),$$

but we cannot say much about the \liminf .

- \circledast Possible to have meaningful information for zero entropy \Rightarrow results also work for *infinite* entropy.
- \circledast Results apply for almost every x,
 - \Rightarrow what about *my* slope α ? if CF-digits satisfy $\log a_k(\alpha) = o(k)$,

$$\log L_n(\alpha; \mathcal{B}, \mathcal{F}) \le \frac{\log 2}{2}n + o(n),$$

but we cannot say much about the \liminf

❀ Several systems of partitions from Number Theory are log-balanced
⇒ almost everywhere or just in measure.
- $\label{eq:possible to have meaningful information for zero entropy \\ \Rightarrow \mbox{ results also work for infinite entropy.}$
- \circledast Results apply for almost every x,

 \Rightarrow what about *my* slope α ? if CF-digits satisfy $\log a_k(\alpha) = o(k)$,

$$\log L_n(\alpha; \mathcal{B}, \mathcal{F}) \le \frac{\log 2}{2}n + o(n),$$

but we cannot say much about the \liminf

❀ Several systems of partitions from Number Theory are log-balanced
⇒ almost everywhere or just in measure.

Questions and further work

1. Existence result for the weight ?

- $\label{eq:possible to have meaningful information for zero entropy \\ \Rightarrow \mbox{ results also work for infinite entropy.}$
- \circledast Results apply for almost every x,

 \Rightarrow what about *my* slope α ? if CF-digits satisfy $\log a_k(\alpha) = o(k)$,

$$\log L_n(\alpha; \mathcal{B}, \mathcal{F}) \le \frac{\log 2}{2}n + o(n),$$

but we cannot say much about the \liminf .

❀ Several systems of partitions from Number Theory are log-balanced
⇒ almost everywhere or just in measure.

Questions and further work

- 1. Existence result for the weight ?
- 2. More explicit results for fixed x? Lochs' like results on average ?

- $\label{eq:possible to have meaningful information for zero entropy \\ \Rightarrow \mbox{ results also work for infinite entropy.}$
- \circledast Results apply for almost every x,

 \Rightarrow what about *my* slope α ? if CF-digits satisfy $\log a_k(\alpha) = o(k)$,

$$\log L_n(\alpha; \mathcal{B}, \mathcal{F}) \le \frac{\log 2}{2}n + o(n),$$

but we cannot say much about the \liminf .

❀ Several systems of partitions from Number Theory are log-balanced
⇒ almost everywhere or just in measure.

Questions and further work

- 1. Existence result for the weight ?
- 2. More explicit results for fixed x? Lochs' like results on average ?
- 3. Bidimensional case more complicated

- $\label{eq:possible to have meaningful information for zero entropy \\ \Rightarrow \mbox{ results also work for infinite entropy.}$
- \circledast Results apply for almost every x,

 \Rightarrow what about *my* slope α ? if CF-digits satisfy $\log a_k(\alpha) = o(k)$,

$$\log L_n(\alpha; \mathcal{B}, \mathcal{F}) \le \frac{\log 2}{2}n + o(n),$$

but we cannot say much about the \liminf .

❀ Several systems of partitions from Number Theory are log-balanced
⇒ almost everywhere or just in measure.

Questions and further work

- 1. Existence result for the weight ?
- 2. More explicit results for fixed x? Lochs' like results on average ?
- 3. Bidimensional case more complicated \Rightarrow measure and diameter not enough.

References

Thank you for your attention! 🖤

V. Berthé, E. Cesaratto, P. Rotondo, and M. Safe, Lochs-type theorems beyond positive entropy, Monatsh Math, vol 200, pp. 737–779, 2023.

G. Lochs,

Die ersten 968 Kettenbruchnenner von π , *Monatsh. Math.* 67, pp. 311–316, 1963.

K. Dajani, and A. Fieldsteel,

Equipartition of Interval Partitions and an Application to Number Theory,

Proceedings of the American Mathematical Society, vol 129, n. 12, pp. 3453–3460, 2001.

K. Dajani, A. Johnson, and M. de Vries, The relative growth of information in two-dimensional partitions., *Real Anal. Exchange 31*, (2) 397–408, 2005/2006.