Absorbing patterns in BST-like expression-trees

Pablo Rotondo

LIGM, Université Gustave Eiffel

Joint work with Florent Koechlin

LIPN, Sorbonne Paris Nord

Meeting EPA!, Buenos Aires, 24 October, 2024.

Plan of the talk

- 1. [Random BST-like tree model](#page-2-0)
- 2. [Semantic simplifications](#page-24-0)
- 3. [Result for BST-like trees and elements of the proof](#page-47-0)
- 4. [Conclusions](#page-84-0)

1. [Random BST-like tree model](#page-2-0)

- 2. [Semantic simplifications](#page-24-0)
- 3. [Result for BST-like trees and elements of the proof](#page-47-0)
- 4. [Conclusions](#page-84-0)

Introduction

Introduction

▶ Automated testing, benchmark testing

• Correctness and performance of algorithms

Introduction

▶ Automated testing, benchmark testing

• Correctness and performance of algorithms

▶ Randomly generated input

- Realistic distribution
- Simple implementation, possibility of theoretical analysis.

Problem: sample random tree of size n ,

- \triangleright representing expression with unary and binary operators,
- ▶ leaves correspond to constants or variables.

¹ If $n=2$, constrained to arity one.

Problem: sample random tree of size n ,

- ▶ representing expression with unary and binary operators,
- ▶ leaves correspond to constants or variables.

Idea: fix probability vectors (p_{op}) and (p_a) for operators and leaves.

¹ If $n=2$, constrained to arity one.

Problem: sample random tree of size n ,

- ▶ representing expression with unary and binary operators,
- ▶ leaves correspond to constants or variables.

Idea: fix probability vectors (p_{op}) and (p_a) for operators and leaves.

If $n > 1$, pick operator¹ following (p_{op}) , else pick random leaf (p_a) .

¹ If $n=2$, constrained to arity one.

Problem: sample random tree of size n ,

- \triangleright representing expression with unary and binary operators,
- ▶ leaves correspond to constants or variables.

Idea: fix probability vectors (p_{op}) and (p_a) for operators and leaves.

- If $n > 1$, pick operator¹ following (p_{op}) , else pick random leaf (p_a) .
- \triangleright if operator is binary, choose *size* of branches uniformly,

¹ If $n=2$, constrained to arity one.

Problem: sample random tree of size n ,

- \triangleright representing expression with unary and binary operators,
- ▶ leaves correspond to constants or variables.

Idea: fix probability vectors (p_{op}) and (p_a) for operators and leaves.

- If $n > 1$, pick operator¹ following (p_{op}) , else pick random leaf (p_a) .
- \triangleright if operator is binary, choose *size* of branches uniformly,

$$
\Pr_n(|T_L|=k)=\frac{1}{n-2}, \qquad k=1,2,\ldots,n-1.
$$

 \triangleright build sub-trees recursively and independently!

¹ If $n=2$, constrained to arity one.

Problem: sample random tree of size n ,

- \triangleright representing expression with unary and binary operators,
- ▶ leaves correspond to constants or variables.

Idea: fix probability vectors (p_{op}) and (p_a) for operators and leaves.

- If $n > 1$, pick operator¹ following (p_{op}) , else pick random leaf (p_a) .
- \triangleright if operator is binary, choose *size* of branches uniformly,

$$
\Pr_n(|T_L|=k)=\frac{1}{n-2}, \qquad k=1,2,\ldots,n-1.
$$

 \triangleright build sub-trees recursively and independently!

Example.

$$
\Pr_n\left(\begin{array}{c} \star \\ + \\ \star \\ a \end{array}\right) = p_{\star}p_{+} \frac{1}{2} p_{a} p_{b}
$$

¹ If $n=2$, constrained to arity one.

Why binary search "like"?

▶ Build BST from *n* random numbers $u_i \in [0,1]$:

 \blacktriangleright With probability $\frac{1}{n}$, root corresponds to k-th ranked u_i .

Why binary search "like"?

▶ Build BST from *n* random numbers $u_i \in [0, 1]$:

- \blacktriangleright With probability $\frac{1}{n}$, root corresponds to k-th ranked u_i .
- ▶ Equivalently, subtrees have sizes $|T_L| = k 1$ and $|T_R| = n k$.

Why binary search "like"?

▶ Build BST from *n* random numbers $u_i \in [0, 1]$:

- \blacktriangleright With probability $\frac{1}{n}$, root corresponds to k-th ranked u_i .
- ▶ Equivalently, subtrees have sizes $|T_L| = k 1$ and $|T_R| = n k$.

Same construction: force our subtrees to have $|T_L|, |T_R| \geq 1$, as node corresponds to binary operator.

Code used in tool lbtt (from TCS) to draw an LTL formula:

```
function RandomFormula(n):
if n = 1 then
      p := random symbol in AP \cup \{\top, \bot\};
      return p;
else if n = 2 then
      op := random unary operator in \{\neg, \mathbf{X}, \Box, \Diamond\};f := {\sf RandomFormula(1)};return op f;
else
      op := random operator in \{\neg, \mathbf{X}, \Box, \Diamond, \wedge, \vee, \rightarrow, \leftrightarrow, \mathbf{U}, \mathbf{R}\};
     if op in \{\neg, \mathbf{X}, \Box, \Diamond\} then
             f := \mathsf{RandomFormula}(n-1);return op f;
     else
             x := uniform integer in [1, n-2];
             f_1 := \mathsf{RandomFormula}(x);f_2 := \mathsf{RandomFormula}(n - x - 1);return (f_1 \text{ op } f_2);
```
Example: BST-like distribution

Consider the regular expressions $(+, \bullet, \star)$ on two letters a, b

 \blacktriangleright The expression tree (i) is drawn with probability

 $p_\star p_+ \frac{1}{2}$ $rac{1}{2}p_ap_b$.

Example: BST-like distribution

Consider the regular expressions $(+, \bullet, \star)$ on two letters a, b

 \blacktriangleright The expression tree (i) is drawn with probability

 $p_\star p_+ \frac{1}{2}$ $rac{1}{2}p_ap_b$.

 \blacktriangleright The expression tree (ii) is drawn with probability

 $p_{+\frac{1}{3}}$ $rac{1}{3}p_a p_\star p_b$.

Example: BST-like distribution

Consider the regular expressions $(+, \bullet, \star)$ on two letters a, b

 \blacktriangleright The expression tree (i) is drawn with probability

 $p_\star p_+ \frac{1}{2}$ $rac{1}{2}p_ap_b$.

 \blacktriangleright The expression tree (ii) is drawn with probability

 $p_{+\frac{1}{3}}$ $rac{1}{3}p_a p_\star p_b$.

 \implies Distribution not uniform for any choice of parameters.

BST-like trees: distribution over unary-binary trees

BST-like tree distribution is not uniform^a.

BST-like trees: distribution over unary-binary trees

BST-like tree distribution is not uniform^a.

▶ Binary nodes \approx balanced $\frac{n}{2} - \frac{n}{2}$ $\frac{n}{2}$, but for uniform trees

> $\mathbb{E}_n[\min(|T_L|, |T_R|)] \sim c_0 \sqrt{\frac{2}{\pi}}$ \overline{n} .

Expected height of different order

 $\Theta(\log n)$ vs $\Theta(\sqrt{n})$.

^aTree T chosen uniformly from ${T : |T| = n}$.

Uniform and BST-like distributions

The uniform distribution:

- ▶ naturally maximizes entropy.
- \triangleright can be sampled efficiently with some effort (Recursive method, Boltzmann samplers, Devroye's constrained GW).
- \blacktriangleright is amenable to theoretical study (Analytic Combinatorics).

Uniform and BST-like distributions

The uniform distribution:

- ▶ naturally maximizes entropy.
- \triangleright can be sampled efficiently with some effort (Recursive method, Boltzmann samplers, Devroye's constrained GW).
- ▶ is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:

- ▶ must be parametrized (prob. of operators).
- \blacktriangleright is easy to implement and very efficient.
- \triangleright is often used in the automated checking of tools.

Uniform and BST-like distributions

The uniform distribution:

- ▶ naturally maximizes entropy.
- \triangleright can be sampled efficiently with some effort (Recursive method, Boltzmann samplers, Devroye's constrained GW).
- ▶ is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:

- ▶ must be parametrized (prob. of operators).
- \blacktriangleright is easy to implement and very efficient.
- \triangleright is often used in the automated checking of tools.

We had previously studied *semantically* uniform expressions...

1. [Random BST-like tree model](#page-2-0)

- 2. [Semantic simplifications](#page-24-0)
- 3. [Result for BST-like trees and elements of the proof](#page-47-0)
- 4. [Conclusions](#page-84-0)

Given tree may be redundant

Or even more:

Given tree may be redundant

Or even more:

Given tree may be redundant

Or even more:

Question

Do semantic reductions affect the size of the random expressions?

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,'20)

Expected size of reduction of uniform tree bounded, as size $\rightarrow \infty$.

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,'20)

Expected size of reduction of uniform tree bounded, as size $\rightarrow \infty$.

▶ Idea based on absorbing pattern P , e.g., false \wedge $(...) \equiv$ false,

$$
\bigwedge^{\circledast}_{\mathcal{P}} \rightarrow \mathcal{P} \qquad \bigwedge^{\circledast}_{T \circ \mathcal{P}} \rightsquigarrow \mathcal{P}
$$

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,'20)

Expected size of reduction of uniform tree bounded, as size $\rightarrow \infty$.

▶ Idea based on absorbing pattern P , e.g., false \wedge $(...) \equiv$ false,

$$
\bigwedge^{\textcircled{\#}}_{\mathcal{P}} \rightarrowtail \mathcal{P} \qquad \bigwedge^{\textcircled{\#}}_{T \text{ } \mathcal{P}} \rightsquigarrow \mathcal{P}
$$

▶ Works also for systems and different arities,
Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,'20)

Expected size of reduction of uniform tree bounded, as size $\rightarrow \infty$.

▶ Idea based on absorbing pattern P , e.g., false \wedge $(...) \equiv$ false,

$$
\bigwedge^{\circledast}_{\mathcal{P}} \rightarrow \mathcal{P} \qquad \bigwedge^{\circledast}_{T \circ \mathcal{P}} \rightsquigarrow \mathcal{P}
$$

▶ Works also for systems and different arities,

Example :
$$
\begin{cases} \mathcal{L}_R = \overrightarrow{s} + \mathcal{S}, \\ \mathcal{S} = a + b + \underset{\mathcal{L}_R}{\nearrow} \underset{\mathcal{L}_R}{\nearrow} + \underset{\mathcal{L}_R}{\nearrow} \underset{\mathcal{L}_R}{\nearrow}.\end{cases}
$$

Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,'20)

Expected size of reduction of uniform tree bounded, as size $\rightarrow \infty$.

▶ Idea based on absorbing pattern P , e.g., false \wedge $(\ldots) \equiv$ false,

$$
\bigwedge^{\circledast}_{\mathcal{P}} \rightarrow \mathcal{P} \qquad \bigwedge^{\circledast}_{T \circ \mathcal{P}} \rightsquigarrow \mathcal{P}
$$

▶ Works also for systems and different arities,

Example:
$$
\begin{cases} \mathcal{L}_R = \overrightarrow{s} + \mathcal{S}, \\ \mathcal{S} = a + b + \underset{\mathcal{L}_R}{\nearrow} \underset{\mathcal{L}_R}{\nearrow} + \underset{\mathcal{L}_R}{\nearrow} \underset{\mathcal{L}_R}{\nearrow}.\end{cases}
$$

▶ For regular expressions on two letters, constant bound ≈ 77.8 .

Definition (Simplification, absorbing pattern)

To define an absorbing pattern we fix:

- ▶ an "operator" $\mathcal{B} \in \mathcal{A}_{obs}$ with arity 2,
- **•** an expression tree P in the family.

Definition (Simplification, absorbing pattern)

To define an absorbing pattern we fix:

- ▶ an "operator" $\mathcal{B} \in \mathcal{A}_{obs}$ with arity 2,
- \blacktriangleright an expression tree P in the family.

Simplify by applying bottom-up the rule:

⊛ C_1 C_2 $\setminus \longrightarrow \mathcal{P}$, whenever $C_i = \mathcal{P}$ for some $i \in \{1, 2\}.$

Definition (Simplification, absorbing pattern)

To define an absorbing pattern we fix:

- ▶ an "operator" $\mathcal{B} \in \mathcal{A}_{obs}$ with arity 2,
- \blacktriangleright an expression tree P in the family.

Simplify by applying bottom-up the rule:

$$
\begin{array}{c}\n\circledast\\ \n\diagup\bigwedge\limits_{C_1} \cdots \mathcal{P}\text{, whenever } C_i=\mathcal{P}\text{ for some }i\in\{1,2\}.\n\end{array}
$$

 \triangleright Wide variety of examples:

▶ Weak hypothesis: in practice often several coexisting patterns !

Definition (Simplification, absorbing pattern)

To define an absorbing pattern we fix:

- ▶ an "operator" $\mathcal{B} \in \mathcal{A}_{obs}$ with arity 2,
- \blacktriangleright an expression tree P in the family.

Simplify by applying bottom-up the rule:

$$
\begin{array}{c}\n\circledast\\ \n\diagup\bigwedge\limits_{C_1} \cdots \mathcal{P}\text{, whenever } C_i=\mathcal{P}\text{ for some }i\in\{1,2\}.\n\end{array}
$$

 \triangleright Wide variety of examples:

▶ Weak hypothesis: in practice often several coexisting patterns !

Absorbing patters: simplifying the trees Denote by $\sigma(T) = \sigma(T, \mathcal{P}, \circledast)$ the simplification of T.

Denote by $\sigma(T) = \sigma(T, \mathcal{P}, \circledast)$ the simplification of T.

Example: regular expressions $(+, \bullet, \star)$ on two letters a, b : $\mathcal{P} = (a + b)^*$ absorbing for union $\mathcal{P} = +$

If we draw a random BST-like tree expression of size n :

▶ do we have the same flaw as uniform trees?

²Left to right $(p_\star, p_\bullet, p_+) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (p_\star, p_\bullet, p_+) = (\frac{5}{29}, \frac{5}{29}, \frac{19}{29}), (p_\star, p_\bullet, p_+) = (\frac{1}{10}, \frac{1}{10}, \frac{8}{10})$ 12 / 24 If we draw a random BST-like tree expression of size n :

 \triangleright do we have the same flaw as uniform trees?

 \implies we characterize 5 regimes

²Left to right $(p_\star, p_\bullet, p_+) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (p_\star, p_\bullet, p_+) = (\frac{5}{29}, \frac{5}{29}, \frac{19}{29}), (p_\star, p_\bullet, p_+) = (\frac{1}{10}, \frac{1}{10}, \frac{8}{10})$ 12 / 24 If we draw a random BST-like tree expression of size n :

 \blacktriangleright do we have the same flaw as uniform trees? \implies we characterize 5 regimes

Experimental expected size $(10\ 000\ s$ amples)² on regular expressions $(+, \bullet, \star)$ on two letters a, b :

²Left to right $(p_\star, p_\bullet, p_+) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (p_\star, p_\bullet, p_+) = (\frac{5}{29}, \frac{5}{29}, \frac{19}{29}), (p_\star, p_\bullet, p_+) = (\frac{1}{10}, \frac{1}{10}, \frac{8}{10})$ 12 / 24

1. [Random BST-like tree model](#page-2-0)

- 2. [Semantic simplifications](#page-24-0)
- 3. [Result for BST-like trees and elements of the proof](#page-47-0)
- 4. [Conclusions](#page-84-0)

Theorem. Consider a family of expression trees defined from unary and binary operators with an absorbing pattern $\mathcal P$ for an operator ⊛ of arity 2.

Take the simplification consisting in inductively changing a ⊛-node by P whenever one of its children simplifies to P .

Theorem. Consider a family of expression trees defined from unary and binary operators with an absorbing pattern $\mathcal P$ for an operator ⊛ of arity 2.

Take the simplification consisting in inductively changing a ⊛-node by P whenever one of its children simplifies to P .

Then the expected size of the simplification of a random BST-like tree has an asymptotic behaviour given by the following cases, depending on the probability p_{R} of the absorbing operator:

$$
\Theta(n) \longrightarrow 0 \text{ (log } n)
$$
\n
$$
\Theta(n) \longrightarrow 0 \text{ (log } n)
$$
\n
$$
\Theta(n^{\theta}) \longrightarrow 0 \text{ (log } n)
$$
\n
$$
\longrightarrow 0 \text{ almost no reduction } \frac{1}{2} \longrightarrow 0 \text{ (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n) (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n) (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n)\n
$$
\longrightarrow 0 \text{ (log n) (log n)\n
$$
\
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$

Theorem. Consider a family of expression trees defined from unary and binary operators with an absorbing pattern $\mathcal P$ for an operator ⊛ of arity 2.

Take the simplification consisting in inductively changing a ⊛-node by P whenever one of its children simplifies to P .

Then the expected size of the simplification of a random BST-like tree has an asymptotic behaviour given by the following cases, depending on the probability p_{∞} of the absorbing operator:

▶ Probability p_{\circledast} of \circledast , and p_1 of picking unary operator.

- ▶ Two critical points $p_{\text{R}} = 1/2$ and $p_{\text{R}} = (3 p_1)/4$
- Regimes from no reduction $\Theta(n)$ to complete reduction $\Theta(1)$

The main regimes experimentally

The main regimes experimentally

Experimental plots (10 000 samples)for regular expressions on two letters $a, b: \mathcal{P} = (a + b)^*$ absorbing for union $\mathcal{P} = +$

Figure: Left to right: linear $(p_+ = p_\star = p_0 = \frac{1}{3})$, sublinear $(p_+ = \frac{19}{29})$, $p_{\star} = p_{\star} = \frac{5}{29}$) and constant $(p_{+} = \frac{8}{10}, p_{\star} = p_{\star} = \frac{1}{10})$. 14 / 24

Scheme of the proof: steps from Analytic combinatorics We employ Analytic Combinatorics to study the expectation,

▶ Ordinary generating function

$$
E(z) := \sum_{n=0}^{\infty} e_n z^n,
$$

encodes sequence $e_n := \mathbb{E}_n[\sigma(T)].$

Scheme of the proof: steps from Analytic combinatorics We employ Analytic Combinatorics to study the expectation,

▶ Ordinary generating function

$$
E(z) := \sum_{n=0}^{\infty} e_n z^n,
$$

encodes sequence $e_n := \mathbb{E}_n[\sigma(T)]$.

• Symbolic Step. We find a formal equation describing $E(z)$. Here this will be an ordinary differential equation

$$
E'(z) = B(z) + C(z) \cdot E(z).
$$

Scheme of the proof: steps from Analytic combinatorics We employ Analytic Combinatorics to study the expectation,

▶ Ordinary generating function

$$
E(z) := \sum_{n=0}^{\infty} e_n z^n,
$$

encodes sequence $e_n := \mathbb{E}_n[\sigma(T)]$.

• Symbolic Step. We find a formal equation describing $E(z)$. Here this will be an ordinary differential equation

$$
E'(z) = B(z) + C(z) \cdot E(z) .
$$

▶ Analytic Step. We look at $E(z)$ over the complex $z \in \mathbb{C}$.

A Transfer Theorem links the behaviour of $E(z)$ at its dominant singularity to asymptotics of $e_n \Rightarrow$ Study singularities

$$
E(z) \sim_{z \to 1} \lambda (1 - z)^{-\alpha} \Longrightarrow e_n \sim \lambda n^{\alpha - 1} / \Gamma(\alpha)
$$

An expression tree T is fully reducible when $\sigma(T) = P$.

An expression tree T is fully reducible when $\sigma(T) = P$.

Fully reducible expressions

▶ dictate the reduction process: leaves of the reduced expression.

An expression tree T is fully reducible when $\sigma(T) = P$.

Fully reducible expressions

 \blacktriangleright dictate the reduction process: leaves of the reduced expression.

 \triangleright can also be specified recursively, e.g.,

$$
\mathcal{P} = \begin{matrix} \star \\ \star \\ a \end{matrix}, \begin{matrix} \star \\ b \end{matrix}, \quad \mathcal{R} = \mathcal{P} + \begin{matrix} \star \\ \star \\ \mathcal{R} \end{matrix}, \begin{matrix} \star \\ \star \\ \mathcal{L} \end{matrix}, \begin{matrix} \star \\ \star \\ \mathcal{R} \end{matrix}.
$$

An expression tree T is fully reducible when $\sigma(T) = P$.

Fully reducible expressions

▶ dictate the reduction process: leaves of the reduced expression.

 \triangleright can also be specified recursively, e.g.,

$$
\mathcal{P} = \begin{matrix} \star \\ \star \\ a \end{matrix}, \begin{matrix} \star \\ b \end{matrix}, \quad \mathcal{R} = \mathcal{P} + \begin{matrix} \star \\ \star \\ \mathcal{R} \end{matrix}, \begin{matrix} \star \\ \star \\ \mathcal{L} \end{matrix}, \begin{matrix} \star \\ \star \\ \mathcal{R} \end{matrix}.
$$

We consider a fundamental sequence

$$
\gamma_n := \Pr_n \{ \sigma(T) = \mathcal{P} \}, \qquad A(z) := \sum \gamma_n z^n ,
$$

of probabilities of *full* reduction and their generating function.

Symbolic step: recurrence for the expected value

We consider a fundamental sequence

$$
\gamma_n := \Pr_n \{ \sigma(T) = \mathcal{P} \},
$$

of probabilities of full reduction.

Symbolic step: recurrence for the expected value

We consider a fundamental sequence

$$
\gamma_n := \Pr_n \{ \sigma(T) = \mathcal{P} \},
$$

of probabilities of *full* reduction.

Recurrence for expected values The recurrence for e_n involves γ_n ,

$$
e_{n+1} = 1 + (s - 1)\gamma_{n+1} \mathbf{1}_{n+1 \neq s} + p e_n
$$

+
$$
\frac{2p_{\text{II}}}{n-1} \sum_{j=1}^{n-1} e_j + \frac{2p_{\circledast}}{n-1} \sum_{j=1}^{n-1} (e_j - s \gamma_j)(1 - \gamma_{n-j}),
$$

here $p_{\text{II}} := 1 - p_{\text{I}} - p_{\text{R}}$ and $s = |\mathcal{P}|$.

Recurrence yields first order differential equation

$$
E'(z) = F(z, A(z)) + \frac{1}{1-p_1z} \left(\frac{2}{z} - p_1 + 2(1-p_1) \frac{z}{1-z} - 2p_{\circledast} A(z) \right) \cdot E(z),
$$

in terms of $A(z) = \sum_n \gamma_n z^n$.

Recurrence yields first order differential equation

$$
E'(z) = F(z, A(z)) + \frac{1}{1-p_1z} \left(\frac{2}{z} - p_1 + 2(1-p_1) \frac{z}{1-z} - 2p_{\circledast} A(z) \right) \cdot E(z),
$$

in terms of $A(z) = \sum_n \gamma_n z^n$.

Proof.

Differentiating we have $E'(z) = \sum (n+1)e_n z^n$.

Recurrence yields first order differential equation

$$
E'(z) = F(z, A(z)) + \frac{1}{1-p_1z} \left(\frac{2}{z} - p_1 + 2(1-p_1) \frac{z}{1-z} - 2p_{\circledast} A(z) \right) \cdot E(z),
$$

in terms of $A(z) = \sum_n \gamma_n z^n$.

Proof.

Differentiating we have $E'(z) = \sum (n+1)e_n z^n$.

First order differential equations can be solved explicitly

Proposition

The equation $U'(z) = f(z) + g(z)U(z)$ where f, g are analytic functions on Ω has a unique solution analytic on Ω , satisfying $U(0) = u_0$,

$$
U(z) = \exp\left(\int_0^z g(\zeta)d\zeta\right) \left(u_0 + \int_0^z f(\zeta) \exp\left(-\int_0^{\zeta} g(w)dw\right)d\zeta\right).
$$

Recurrence yields first order differential equation

$$
E'(z) = F(z, A(z)) + \frac{1}{1-p_1z} \left(\frac{2}{z} - p_1 + 2(1-p_1) \frac{z}{1-z} - 2p_{\circledast} A(z) \right) \cdot E(z),
$$

in terms of $A(z) = \sum_n \gamma_n z^n$.

Proof.

Differentiating we have $E'(z) = \sum (n+1)e_n z^n$.

First order differential equations can be solved explicitly

Proposition

The equation $U'(z) = f(z) + g(z)U(z)$ where f, g are analytic functions on Ω has a unique solution analytic on Ω , satisfying $U(0) = u_0$,

$$
U(z) = \exp\left(\int_0^z g(\zeta)d\zeta\right) \left(u_0 + \int_0^z f(\zeta) \exp\left(-\int_0^{\zeta} g(w)dw\right)d\zeta\right).
$$

Our coefficients depend on z and the unkown generating function $A(z)$.

The generating functions $A(z)$ and $E(z)$

▶ are analytic for $|z|$ < 1, as the series converge absolutely.

The generating functions $A(z)$ and $E(z)$

- ▶ are analytic for $|z|$ < 1, as the series converge absolutely.
- \blacktriangleright have $z = 1$ as a dominant singularity: $\rho = 1$ radius of convergence.

The generating functions $A(z)$ and $E(z)$

- ▶ are analytic for $|z|$ < 1, as the series converge absolutely.
- \blacktriangleright have $z = 1$ as a dominant singularity: $\rho = 1$ radius of convergence.

Solution of ODE gives asymptotics

$$
E(z) \sim \frac{c}{(1-z)^2} \left(2 + \int_0^z F(w, A(w)) I(w) dw\right) (I(z))^{-1}, \quad z \to 1,
$$

where $I(z) := \exp\left(2p_{\circledast} \int_0^z \frac{A(w)}{1 - p_w} dw\right).$

The generating functions $A(z)$ and $E(z)$

- ▶ are analytic for $|z|$ < 1, as the series converge absolutely.
- \blacktriangleright have $z = 1$ as a dominant singularity: $\rho = 1$ radius of convergence.

Solution of ODE gives asymptotics

$$
E(z) \sim \frac{c}{(1-z)^2} \left(2 + \int_0^z F(w, A(w)) I(w) dw\right) (I(z))^{-1}, \quad z \to 1,
$$

where $I(z) := \exp\left(2p_{\circledast} \int_0^z \frac{A(w)}{1 - p_1 w} dw\right).$

To apply the Transfer Theorem and complete the proof:

- \triangleright we require precise asymptotics for $A(z)$ at $z=1$,
- \triangleright we show that $A(z)$ and $E(z)$ are analytic over $\Omega = \mathbb{C} \setminus [1, \infty)$.

Fully reducible trees: probabilities

We study the generating function $A(z)=\sum \gamma_n z^n$

Proposition: recurrence for γ_n

The probabilities $\gamma_n = \Pr_n \{ \sigma(T) = \mathcal{P} \}$ satisfy, for $n \geq |\mathcal{P}|$,

$$
\gamma_{n+1} = \frac{p_{\circledast}}{n-1} \sum_{k=1}^{n-1} (\gamma_k + \gamma_{n-k} - \gamma_k \gamma_{n-k}).
$$

Fully reducible trees: probabilities

We study the generating function $A(z)=\sum \gamma_n z^n$

Proposition: recurrence for γ_n

The probabilities $\gamma_n = \Pr_n {\sigma(T) = \mathcal{P}}$ satisfy, for $n \geq |\mathcal{P}|$,

$$
\gamma_{n+1} = \frac{p_{\circledast}}{n-1} \sum_{k=1}^{n-1} (\gamma_k + \gamma_{n-k} - \gamma_k \gamma_{n-k}).
$$

Remark. If $\gamma_n \to \gamma_\infty$, by Cesàro means $\gamma_\infty = p_\circledast \cdot (2\gamma_\infty - \gamma_\infty^2)$.
Fully reducible trees: probabilities

We study the generating function $A(z)=\sum \gamma_n z^n$

Proposition: recurrence for γ_n

The probabilities $\gamma_n = \Pr_n {\sigma(T) = \mathcal{P}}$ satisfy, for $n > |\mathcal{P}|$,

$$
\gamma_{n+1} = \frac{p_{\circledast}}{n-1} \sum_{k=1}^{n-1} (\gamma_k + \gamma_{n-k} - \gamma_k \gamma_{n-k}).
$$

Remark. If $\gamma_n \to \gamma_\infty$, by Cesàro means $\gamma_\infty = p_\circledast \cdot (2\gamma_\infty - \gamma_\infty^2)$.

Recurrence translates into Riccati differential equation

$$
A'(z) = (s-2)\gamma_s z^{s-1} + \left(\frac{2}{z} + 2p_{\circledast} \frac{z}{1-z}\right) A(z) - p_{\circledast} \cdot (A(z))^2,
$$

where $s = |\mathcal{P}|$ is the size of the absorbing pattern.

Behaviour of solutions of Riccati ODE

Considering $v(z)$ such that $p_{\circledast}A(z) = v'(z)/v(z)$, Riccati equation becomes linear

$$
v''(z) = p_{\circledast} \cdot (s-2)\gamma_s z^{s-1}v(z) + \left(\frac{2}{z} + 2p_{\circledast} \frac{z}{1-z}\right)v'(z).
$$

Behaviour of solutions of Riccati ODE

Considering $v(z)$ such that $p_{\circledast}A(z) = v'(z)/v(z)$, Riccati equation becomes linear

$$
v''(z) = p_{\circledast} \cdot (s-2)\gamma_s z^{s-1}v(z) + \left(\frac{2}{z} + 2p_{\circledast} \frac{z}{1-z}\right)v'(z).
$$

For linear ODEs:

- ▶ domain of analyticity well-understood.
- ▶ Frobenius method characterizes behaviour at singularities.

Behaviour of solutions of Riccati ODE

Considering $v(z)$ such that $p_{\circledast}A(z) = v'(z)/v(z)$, Riccati equation becomes linear

$$
v''(z) = p_{\circledast} \cdot (s-2)\gamma_s z^{s-1} v(z) + \left(\frac{2}{z} + 2p_{\circledast} \frac{z}{1-z}\right) v'(z).
$$

For linear ODEs:

- ▶ domain of analyticity well-understood.
- ▶ Frobenius method characterizes behaviour at singularities.

Proposition

The generating function $A(z)$ satisfies, $z \to 1$

► For
$$
p_{\circledast} > \frac{1}{2}
$$
, $A(z) = \frac{\gamma_{\infty}}{1-z} + O((1-z)^{2p_{\circledast}-2})$,
\n► For $p_{\circledast} = \frac{1}{2}$, $A(z) = \frac{2}{1-z} \left(\log \left(\frac{1}{1-z} \right) \right)^{-1} \left(1 + O \left(\log \left(\frac{1}{1-z} \right)^{-1} \right) \right)$
\n► For $p_{\circledast} < \frac{1}{2}$, $A(z) \sim \frac{D}{(1-z)^{2p_{\circledast}}}$,

where $\gamma_{\infty} := (2p_{\circledast}-1)/p_{\circledast}$ and $D > 0$ is a constant.

Probability of full reduction

Theorem

The probability γ_n of being fully reducible tends to the constant $\gamma_\infty:=(2p_\circledast-1)/p_\circledast$ for $p_\circledast>\frac{1}{2}$ $\frac{1}{2}$ and to zero otherwise. Moreover,

\n- for
$$
p_{\circledast} = \frac{1}{2}
$$
 we have $\gamma_n \sim \frac{2}{\log n}$,
\n- for $p_{\circledast} < \frac{1}{2}$, $\gamma_n \sim D \cdot n^{2p_{\circledast} - 1}$.
\n

Probability of full reduction

Theorem

The probability γ_n of being fully reducible tends to the constant $\gamma_\infty:=(2p_\circledast-1)/p_\circledast$ for $p_\circledast>\frac{1}{2}$ $\frac{1}{2}$ and to zero otherwise. Moreover,

\n- for
$$
p_{\circledast} = \frac{1}{2}
$$
 we have $\gamma_n \sim \frac{2}{\log n}$,
\n- for $p_{\circledast} < \frac{1}{2}$, $\gamma_n \sim D \cdot n^{2p_{\circledast} - 1}$.
\n

$$
v''(z) = p_{\circledast} \cdot (s-2)\gamma_s z^{s-1}v(z) + \left(\frac{2}{z} + 2p_{\circledast} \frac{z}{1-z}\right)v'(z),
$$

and we want the behavior around $z = 1$ (false pole at $z = 0$).

$$
v''(z) = p_{\circledast} \cdot (s-2)\gamma_s z^{s-1}v(z) + \left(\frac{2}{z} + 2p_{\circledast} \frac{z}{1-z}\right)v'(z),
$$

and we want the behavior around $z = 1$ (false pole at $z = 0$).

Frobenius Method [Fuchs' Theorem]

Let $v''(z) = \frac{q(z)}{(1-z)^2}v(z) + \frac{p(z)}{1-z}v'(z)$ with $q(z)$ and $p(z)$ analytic at $z=1$.

$$
v''(z) = p_{\circledast} \cdot (s-2)\gamma_s z^{s-1}v(z) + \left(\frac{2}{z} + 2p_{\circledast} \frac{z}{1-z}\right)v'(z),
$$

and we want the behavior around $z = 1$ (false pole at $z = 0$).

Frobenius Method [Fuchs' Theorem]

Let $v''(z) = \frac{q(z)}{(1-z)^2}v(z) + \frac{p(z)}{1-z}v'(z)$ with $q(z)$ and $p(z)$ analytic at $z=1$.

If α is a root of the *indicial equation*

$$
X^2 = (p(1) + 1)X + q(1),
$$

there is $h_\alpha(z)$ analytic at $1,~h_\alpha(1)=1,$ such that $(1-z)^\alpha h_\alpha(z)$ is a solution of the ODE.

$$
v''(z) = p_{\circledast} \cdot (s-2)\gamma_s z^{s-1}v(z) + \left(\frac{2}{z} + 2p_{\circledast} \frac{z}{1-z}\right)v'(z),
$$

and we want the behavior around $z = 1$ (false pole at $z = 0$).

Frobenius Method [Fuchs' Theorem]

Let $v''(z) = \frac{q(z)}{(1-z)^2}v(z) + \frac{p(z)}{1-z}v'(z)$ with $q(z)$ and $p(z)$ analytic at $z=1$.

If α is a root of the *indicial equation*

$$
X^2 = (p(1) + 1)X + q(1) \,,
$$

there is $h_\alpha(z)$ analytic at $1,~h_\alpha(1)=1,$ such that $(1-z)^\alpha h_\alpha(z)$ is a solution of the ODE.

Let α_1 and α_2 be the roots of the indicial equation.

$$
v''(z) = p_{\circledast} \cdot (s-2)\gamma_s z^{s-1}v(z) + \left(\frac{2}{z} + 2p_{\circledast} \frac{z}{1-z}\right)v'(z),
$$

and we want the behavior around $z = 1$ (false pole at $z = 0$).

Frobenius Method [Fuchs' Theorem]

Let $v''(z) = \frac{q(z)}{(1-z)^2}v(z) + \frac{p(z)}{1-z}v'(z)$ with $q(z)$ and $p(z)$ analytic at $z=1$.

If α is a root of the *indicial equation*

$$
X^2 = (p(1) + 1)X + q(1) \,,
$$

there is $h_\alpha(z)$ analytic at $1,~h_\alpha(1)=1,$ such that $(1-z)^\alpha h_\alpha(z)$ is a solution of the ODE.

Let α_1 and α_2 be the roots of the indicial equation.

► If $\alpha_1 - \alpha_2 \notin \mathbb{Z}$, solutions are linearly independent.

$$
v''(z) = p_{\circledast} \cdot (s-2)\gamma_s z^{s-1}v(z) + \left(\frac{2}{z} + 2p_{\circledast} \frac{z}{1-z}\right)v'(z),
$$

and we want the behavior around $z = 1$ (false pole at $z = 0$).

Frobenius Method [Fuchs' Theorem]

Let $v''(z) = \frac{q(z)}{(1-z)^2}v(z) + \frac{p(z)}{1-z}v'(z)$ with $q(z)$ and $p(z)$ analytic at $z=1$.

If α is a root of the *indicial equation*

$$
X^2 = (p(1) + 1)X + q(1) \,,
$$

there is $h_\alpha(z)$ analytic at $1,~h_\alpha(1)=1,$ such that $(1-z)^\alpha h_\alpha(z)$ is a solution of the ODE.

Let α_1 and α_2 be the roots of the indicial equation.

► If $\alpha_1 - \alpha_2 \notin \mathbb{Z}$, solutions are linearly independent.

► If
$$
\alpha_1 - \alpha_2 \in \mathbb{Z}
$$
, factor $(1 - z)^{|\alpha_1 - \alpha_2|}$ is polynomial.
\n⇒ to obtain independent solution multiply × log(1 - z).

23 / 24

1. [Random BST-like tree model](#page-2-0)

- 2. [Semantic simplifications](#page-24-0)
- 3. [Result for BST-like trees and elements of the proof](#page-47-0)
- 4. [Conclusions](#page-84-0)

Conclusions

⊛ BST-like expression trees present a richer range of behaviours than the uniform ones.

Conclusions

- ⊛ BST-like expression trees present a richer range of behaviours than the uniform ones.
- ⊛ Not exempt of degenerate cases however

 \Rightarrow tuning probabilities might be important.

Conclusions

- ⊛ BST-like expression trees present a richer range of behaviours than the uniform ones.
- ⊛ Not exempt of degenerate cases however

 \Rightarrow tuning probabilities might be important.

Conclusions

- ⊛ BST-like expression trees present a richer range of behaviours than the uniform ones.
- ⊛ Not exempt of degenerate cases however \Rightarrow tuning probabilities might be important.

Questions and further work

1. Absorbing operator \circledast of arity $a > 3$?

Conclusions

- ⊛ BST-like expression trees present a richer range of behaviours than the uniform ones.
- ⊛ Not exempt of degenerate cases however \Rightarrow tuning probabilities might be important.

Questions and further work

1. Absorbing operator \circledast of arity $a > 3$? \Rightarrow expect similar results, threshold $\frac{1}{a}$ instead of $\frac{1}{2}$.

Conclusions

- ⊛ BST-like expression trees present a richer range of behaviours than the uniform ones.
- ⊛ Not exempt of degenerate cases however \Rightarrow tuning probabilities might be important.

Questions and further work

- 1. Absorbing operator \circledast of arity $a > 3$? \Rightarrow expect similar results, threshold $\frac{1}{a}$ instead of $\frac{1}{2}$.
- 2. Absorbing pattern model is general \Rightarrow consider interactions between operators?

Conclusions

- ⊛ BST-like expression trees present a richer range of behaviours than the uniform ones.
- ⊛ Not exempt of degenerate cases however \Rightarrow tuning probabilities might be important.

Questions and further work

- 1. Absorbing operator \circledast of arity $a > 3$? \Rightarrow expect similar results, threshold $\frac{1}{a}$ instead of $\frac{1}{2}$.
- 2. Absorbing pattern model is general \Rightarrow consider interactions between operators?
- 3. Take a concrete case: LTL formulas.

References

螶 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, Cambridge (2009). [https:](https://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html) [//algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html](https://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html)

暈

Florent Koechlin, Cyril Nicaud, and Pablo Rotondo. On the Degeneracy of Random Expressions Specified by Systems of Combinatorial Equations. Proceedings of DLT 2020, LNCS vol. 12086, pp 164–177.

https://doi.org/10.1007/978-3-030-48516-0_13

■ Florent Koechlin and Pablo Rotondo.

Analysis of an efficient reduction algorithm for random regular expressions based on universality detection. Proceedings of CSR 2021. LNCS, vol 12730. Springer. https://doi.org/10.1007/978-3-030-79416-3_12

Florent Koechlin and Pablo Rotondo. Absorbing patterns in BST-like expression-trees. Proceedings of STACS 2021, LIPICs, vol.187, 48:1–48:15 <https://doi.org/10.4230/LIPIcs.STACS.2021.48>