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1 Introduction

A classical newbie error in programming is two shuffle an array or permutation by applying suc-
cessive random transpositions as follows: [C code]

// initialize the array, but we will work with O...N-1 instead in C.
for (int 1 = 0; i < N; i++)
ali] = i;
// for a number of iterations K that should depend on N
for (int t = 0; t < K; t++)

{
int i = random(0,N-1); // pick element i uniformly from {0,...,N-1}
int j = random(O,N-1); // independently of i
swap(a,i,j); // swap positions i and j in a.

}

return a;

This procedure does not produce a uniform permutation of the array, and must be calibrated in
order to approximate one by choosing K sufficiently large in order to ensure a certain approxima-
tion of a uniform permutation.

The evolution of the previous algorithm is modeled by a Markov Chain: that is, the namely
the transition probabilities depend only on the current state of the permutation. We explain this.
Let 7y, be the permutation of [N]:={1,...., N } at time k (a random variable), then the definition is:

e at time 0 we have mp=[1,2,3,..., N].

e at time t+1>1 we throw a random pair (i, j) € [N] x [N], uniformly, and we swap the
contents of positions ¢ and j, namely ;11 (k): =m(k) for k#£4, j and mp41(3): =7m(5), me41(J):
=m(i). In this case we write w1 = (i, j)[m¢] to denote that we swap the entries.

Then (7¢): is a Markov Chain in which Pr(m;y1=v|m=0)=0 if v and o differ in more than two
entries, if v=0 we have Pr(my.1=v |my=7)=1/N, and Pr (7,4 1=v |r;=0) =2/ N? if they differ
in exactly two entries. Thus p, , =Pr (711 =v|m:=0) depends only on the permutations ¢ and v.

Important. If the random pair (i, j) is chosen, the effect is the same as applying the transposition
(m(i) m(j)). Thus we view the problem as shuffling by transpositions: at each time we choose
(i, 7) € [N] x [N] uniformly at random and apply the transposition (i j).

We want to study the convergence of the distribution of 7; to the uniform distribution over all
permutations. Let Q) be the distribution after k steps, while we let U be the uniform distribution.
Recall that, if we define the transition matrix P = [py ,]o.vecsy, then Qr = QoP¥, where Qq is
thought of as a line vector Qo€ M xnI1(R).

Definition 1. (Total Variation Distance) The total variation distance between to distributions
P and Q over the same finite set of states S is defined by

1Q = Plltv=5Y_ 1Q(s) - P(s)].

ses

Equivalently, || Q — P||lrv=maxs/cg |Q(S") — P(S’)|, the mazimum difference.
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We are going to prove that the cut-off happens around K =0 (N log N), more precisely:

Theorem 2. As N — oo, if K< (N /2)log N we have liminf|| Qx — U ||ryv>1— e~ !, while, if
K >2Nlog N we have |Qx — U || v —0.

Notation. Here we have used the notation K < (N /2)log N to mean that K = K (N) satisfies
K <(1—¢)(N/2)logN, for some fixed € > 0, and similarly K > 2N log N to mean that K > (1+
€)(N/2)log N for some e > 0.

The first statement tells us that 7NlogN shuffles are necessary, while the second one tells us
that a bit more than 2N log N are enough. In this note we give a simple proof of this fact, based
on the ideas in [1]. More precise results exist. In fact, it is known that the exact cut-off happens
around %N log N, see [2] for more.

2 Model and definitions

As mentioned, what we have is clearly a Markov Chain. This chain is actually Ergodic and, thus
the distribution Q) converges to its unique stationary distribution, which can easily be checked to
be the uniform distributon U.

2.1 Ergodic Theorem

We recall that a Markov Chain is irreducible if and only if there is a path of nonzero probability
between any two states (in both senses). This ensures that all states are reachable.

Seond, a Markov Chain is aperiodic if and only if the greatest common divisor of the lengths
of all cycles is one. By coprimality, this condition implies that there exists some L such that, for
all k> L there is a path of length k (with strictly positive) between every pair of states, or even
from a state to itself.

Both conditions together ensure the convergence to a unique stationary distribution, see e.g.,
[4]. Observe that these conditions can be verified from the transition matrix P, and do not involve
the initial distribution po. Let us write us= poP?.

Theorem 3. If a Markov Chain is both irreducible and aperiodic, then there is only one stationary
distribution o , moreover, starting from any initial distribution pg we have py — fhoo.

In the case of our Markov Chain it is easy to verify that the uniform distribution is a stationary
distribution. We remark that, since (a, b)[s] is the only state such that (a,b)[(a,b)[s]] =s,

1
fit1(s) = Z pe((a,b)[s]) -
(a,b)€[N]x [N]
Trivially we have
1 1 1
NI N? K
(a;b)€ [N]x[N]

the uniform distribution is stationary. Since it is clear that the chain is irreducible and aperiodic,
we have the convergence to the uniform distribution.

3 The coupon collector: a lower bound

A very simple lower bound we can produce for our problem is the following: surely, if some position i
has not yet been swapped we have (i) =4. Such an i is said to be a fixed-point of the permutation
m . It is important to note (and we are not going to prove it here) that the set of permutations
without fixed points Dy satisfies |Dy|/|Sn|— e~ L.
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Unfortunately, if K <(1— 5)7Nlog N, we are going to show that Pr (7x € Dn) — 0. This means
that

1@k = Ullrv=max [Qx(A) —U(A)| > |Qx(Dn) —U(Dy)] —el.

Hence we are far from converging to U.

In order to prove that there exists some ¢ that has not yet been discovered by time K, we use
the Coupon Collector Problem. The connection is simple: each i € {1,..., N } is a coupon, and each
pair (4, j) corresponds to drawing two new random coupons in the Coupon Collector Problem.

3.1 The coupon collector problem

The coupon collector problem reads as follows:

Suppose we had to collect a collection of N distinct coupon’s. At the beginning we
have zero coupons. Each time we buy a coupon, we obtain a coupon among those N
uniformly at random. How long does it take to complete the full collection?

The answer is actually not that difficult. Let C'=Cy be the necessary number of coupon’s we
have to buy.

Notation 4. Let us denote by X = Geom(q) a generic geometric random variable that is 1 based,
ie. Pr(X =35)=q(1—q) ™1 for j € Zwo. Unless otherwise stated, all of the geometrics are
independent Tv.

With this notation we note that Cy = Geom(1) + Geom((N —1)/N)+ ...+ Geom(1/N). The

following is an immedaite consequence of E[Geom(p)] :;} for p>0.

Proposition 5. The expected number of coupons we have to buy is E[Cn]|= N - Hy where Hy =
TIJFEIJF e +—]1[ are the Harmonic numbers. Moreover E[Cy]~ N log N.

3.2 Cocentration on the expected value
In this case not only is E[Cy]~ N log N but also Cy behaves like N log N with high probability.

We will use the convergence (or equivalent) in probability.

Definition 6. Let X, be a sequence of positive random variables. We say that X,,— L in probability
if and only if, for every fixed e >0 we have Pr (| X, — L|>¢)—0 as n—oco.

Definition 7. Let X,, be a sequence of positive random variables and let (e,) be a sequence of real
numbers. We say that X, ~ ey, if and only if X, /e, tends to one in probability.

To prove concetration we use Chebyshev’s inequality: if the random variable X has finite first
and second moments, for any ¢ >0,

o (X)
5 b
The following lemma is a direction application of Chebyshev’s inequality by picking § = E[X,,]:

Pr(|X — E[X]|26) < o (X)=/Var(X) = VE[(X - EX)7-

Lemma 8. Let X,, be a sequence of positive random variables such that e, := E[X,] tends to
infinity. If E[X2] ~ €2 we have that X, ~ e, in probability.

To better deal with the moments of our random variables Cy, we consider the probability
generating functions. Observe that if X is a random variable taking values in the positive integers:

Fx(2)=>_ Pr(X =k)z",
k

and then Fx (1) = E[X] and F¥(1)=E[X (X —1)].
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In the case of Cy we simply have, due to the independence of each of the geometric random
variables,

N-—-1 2D
F(2) = Fy(z) = 1] Tz(1=p)

We show that we have the concentration in a more general setting for sums of geometric random
variables:

Lemma 9. For each n, define (pn(3)) fori=1,...,m(n) satisfying p,(i) € (0,1], where we suppose
m(n) —oo. Let S, = ZZ(?) Geom(pn(i)), then S, ~ E[S,] in probability.

Proof. The PGF of S, is

an(z)
F(z)=F,(2)= —_—
@=ri)= T 7520
Observe that FI(Z) e m(n)@_k F(z)Z:n:(in) % . Thus F,(]_) = ZZT;(IL) pn;(’t) ‘We note
that the expected value is E[S,] = Z;n:(?) . l(z.) >m(n) —o0o.
Differentiating again, !

by 1 o1V 1opa®) )R (1 pali))?
i =mm) pn—@')‘m(””(an(i))(Z ) )T

1=1

Which we can simplify to:

m(n) 2 m(n) - N
f :
Here we note that Z;%:(f) %S Zm(") ;:0((27@(") L )2) and similarly m(n) =
o (2 )2) to0. Thus E[Sy(Sy —1)] = E[SZ] - E[S,] = F"(1) ~ (% _12_))2:(1@[54)2. O

0] P

Corollary 10. For any fired € >0, Pr((1—¢)NlogN <Cy<(14+¢)NlogN)— 1.

3.3 Coupon collector and fixed points in the process

In the case of the Coupon Collector much more is known. The following is a classical inequality:
Proposition 11. Pr(Cy > Nlog N +60N)<e % for every § €R.

Proof. Remark that Pr (Cy > M), for M integer, is the probability that at least one of the
coupons is missing at time M. Let A;(M) be the event that coupon 4 is missing. Observe that

Pr(Ai(M)) = (1- )"

By the union bound:
N
Pr (Cy ZM):PY<U AZ(M)> SZ Pr(4;,(M))=N x (1 —_;)M.
i=1 i=1

Since 1 +x <e® for all z € R, we deduce N x (1 f—;,)M < Ne M/N, Being Cly an integer, we deduce
that Pr(Cy > NlogN+60N)=Pr(Cy >[Nlog N +6N]) and the result follows. O

Actually, this inequality can be made more precise by using more terms from the so-called
Bonferroni inequalities (the partial sums of the inclusion-exclusion provide bounds). That is the
idea behind the proof of the following result from Erdos and Rényi [3].

Theorem 12. Pr(Cy < Nlog N +0N)—exp (—e~?) as N— oo, for every § €R.

The distribution function @+ exp (—e~%) is known as a Gumbel distribution.
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4 Uniform stopping rule: an upper bound

4.1 Strong uniform time and convergence

Aldous and Diaconis introduced in [1] the concept of strong uniform time. A uniform stopping
time T for (m), is a stopping time, i.e., {T <t} can be determined from our knowledge at time ¢,
such that Pr(m, =0 |T =t)=1/N/, i.e., that the distribution when the stopping time T tells us to
stop p (o) =Pr(my=0|T =t) is uniform.

Of course, here we have adapted the definition to our context, but it extends easily to other
contexts. The key interest of a strong uniform time is the following bound (see Lemma 1 in [1]):

Proposition 13. Let T be a uniform stopping time and let U be the uniform distribution, then
1Qr—U ||rv< Pr (T > k).

That is, the total variation distance between Qj, the distribution of 7, and the uniform
distribution U is at most Pr (T > k).

4.2 Perfectly stopping our Markov Chain
We define an increasing family of sets as follows:
e Let Sy={1} (the choice of 1 is arbitrary and not important).

e Given S; we define Sy4; as follows. First, Sy CS;y1. If the next random pair (a¢41,bi41)
satisfies a;y1 €Sy then byy1 is added to Syy1. Else if a;41 ="bsy1, then add asy1 to Spyq.

The invariant is the following: the restriction of m; to S; is a uniform permutation. This is easily
proven by induction. As S; increases in size, at some point we obtain S;=[N].
We define our stopping time as follows:

T(w) = inf {t: Sy(w) = [N]}.

Proposition 14. [T is a strong uniform time] Pr (m =0 |T =k) is uniformly distributed in o.

Proof. Suppose that 7y|s, is a uniform permutation for some k, we will show that this also holds
for k4 1. This is obvious if Si = Skt1, so suppose Si+1 has some new element j.

This means that the random pair (ag11,br+1) was either (a, j) with a in Sy or it was (j, 7).
Remark that all of these transpositions have equal probability of being produced. Most impor-
tantly, as j has the same probability of being swapped with any element in Sk =S U{j} we
conclude that the resulting permutation (given that 7g|s, is a uniform permutation for some k)
is also uniform 7 11|s, - O

Remark 15. It is possible to produce a perfect random permutation by keeping S; and thus
perfectly stopping our permutation. Of course, no one does this in practice, and there are much
better ways to produce permutations.

4.3 Concentration of the stopping time

In this section we prove that the stopping time is concentrated around its expected value
E[T]~2N log N. Let us start by calculating the expected value. The probability of discovering
a new number at time ¢+ 1, given that |Sy| =1 is given by

AN =) H (N =) (i DN i)
(3 N2 N2 b

independently of the past.
Thus we have

N-1
T= Z Geom(p;)
i=1
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for certain independent geometric random variables.

Proposition 16. The expected value satisfies E[T]~2N log N as N — 0.

i . = N-11_ N-1 N2 _ N-1( 1 1
Proof. It suffices to check that E[T]=3%"."] o= >l W—Nzizl (H’_1+ﬁ)
Here we remark that Hy _1= Zf\;lﬁ, while Zi\;l”—lleN —1. O

Now, applying Lemma 9 we deduce the following corollary.
Corollary 17. For any fized € >0, Pr(T'>(1+¢)2NlogN)—0 .

Finally, Proposition 13 proves that || Qx — U|lrv—0 for K > (24 ¢)N log N, for any & >0,
completing the proof of our theorem.

5 Conclusions

The method proposed at the beginning is not very good; it requires © (N log N) random numbers
from [N]. A simple algorithm that is efficient, and a perfect simulation, is the following [known as
Knuth’s shuffle or the Fisher-Yates shuffle]

// initialize the array, but we will work with 0...N-1 instead.

for (int i = 0; 1 < N; i++)
ali] = i;

// for each position choose one of the not-chosen elements

for (int i = 0; 1 < N; i++)

{
int pos = random(i,N-1); // pick uniformly at random from {i,...,N-1}
swap(a,i,pos); // swap positions i and pos in a.

}

return a;
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