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» Aim: study and model actual implementations

e Engineers sometimes choose innovative implementations
e.g., TimSort in Python.

e Study choices in depth, make recommendations.

» The Lua programming language
e Scripting language widely used in the gaming industry,

e Efficient, lightweight (few Kb of C code!), embeddable.

= Lua 5.0 introduced several innovations,
among them a new Table structure.
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The Lua programming language!

What is Lua?

Lua is a powerful, efficient, lightweight, embeddable scripting language. It
supports procedural pregramming, object-oriented programming, functional
programming, data-driven programming, and data description.

Lua combines simple procedural syntax with powerful data description
arays and Lua is
dynamically typed, runs by interprefing bylecode with a register-based
virtual machine, and has automatic memory management with incremental
garbage collection, making it ideal for configuration, scripting, and rapid
prototyping.

< Why choose Lua?

Lua is a proven, robust language

Lua has been used in many industrial applications (e.g., Adobe's Photoshop
Lightroom), with an emphasis on embedded systems (e.g., the Ginga
middleware for digital TV in Brazil) and games (e.g., World of Warcraft and
Angry Birds). Lua is currently the leading scripting language in games. Lua
has a solid reference manual and there are several books about it. Several
versions of Lua have been released and used in real applications since its
creation in 1993. Lua featured in HOPL IIl, the Third ACM SIGPLAN History
of Programming Languages Conference, in 2007. Lua won the Front Line
Award 2011 from the Game Developers Magazine.

! Copyright (©) 1994-2022 Lua.org, PUC-Rio.
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Lua is a powerful, efficient, lightweight, embeddable scripting language. It
supports procedural pregramming, object-oriented programming, functional
programming, data-driven programming, and data description.

Lua combines simple procedural syntax with powerful data description
arays and Lua is
dynamically typed, runs by interprefing bylecode with a register-based
virtual machine, and has automatic memory management with incremental
garbage collection, making it ideal for configuration, scripting, and rapid
prototyping.

Lua is fast

< Why choose Lua?

Lua is a proven, robust language

Lua has been used in many industrial applications (e.g., Adobe's Photoshop
Lightroom), with an emphasis on embedded systems (e.g., the Ginga
middleware for digital TV in Brazil) and games (e.g., World of Warcraft and
Angry Birds). Lua is currently the leading scripting language in games. Lua
has a solid reference manual and there are several books about it. Several
versions of Lua have been released and used in real applications since its
creation in 1993. Lua featured in HOPL IIl, the Third ACM SIGPLAN History
of Programming Languages Conference, in 2007. Lua won the Front Line
Award 2011 from the Game Developers Magazine.

Lua has a deserved reputation for performance. To claim to be "as fast as
Lua" is an aspiration of other scripting languages. Several benchmarks
show Lua as the fastest language in the realm of interpreted scripting
languages. Lua is fast not only in fine-tuned benchmark programs, but in
real life too. Substantial fractions of large applications have been written in

Lua.

If you need even more speed, try LuaJIT, an independent implementation of

Lua using a just-in-time compiler.

! Copyright (©) 1994-2022 Lua.org, PUC-Rio.
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» Only data-structuring mechanism in Lua

e assignment H[x]=y, any types of x and y.
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The implementation of tables in Lua involves some clever algorithms. Every
table in Lua has two parts: the array part and the hash part. The array part
stores entries with integer keys in the range 1 to n, for some particular n. (We
will discuss how this n is computed in a moment.) All other entries (including
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e Lua 5 introduced a hybrid hash-array implementation,

The implementation of tables in Lua involves some clever algorithms. Every
table in Lua has two parts: the array part and the hash part. The array part
stores entries with integer keys in the range 1 to n, for some particular n. (We
will discuss how this n is computed in a moment.) All other entries (including
integer keys outside that range) go to the hash part.

Figure: Extract from the book Lua Programming Gems.

» In our work we study this mechanism.
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Introduction: worst case Lua hash-table

Running time:

» insertions and lookups work in amortized O(1)
even if table is full.

» we show there is a degradation if deletions are allowed.

Consider sequences of T' insertions/deletions from empty table
Proposition: worst case

There is sequence of operations giving time ©(77?). GH

» Example requires an unlikely cycle of delete-insert.

» A problem for more realistic scenarios ?
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Introduction: probabilistic model for the hash-table

Our Simple Probabilistic model
Consider p > % A random sequence of T insertion/deletions:
» with probability p insert a new element,

» with probability 1 — p delete an element.
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» with probability p insert a new element,

» with probability 1 — p delete an element.

total time (seconds)

0.6

amortized time per operation (yis/op)

PR
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number of operations (logscale)

Main result: Lua hash-table
With high probability, complexity is (7 logT'). ® J

We propose potential fixes... which we will see and implement during the talk
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Plan of the talk

1. The Lua hashmap

2. The probabilistic model

3. Hybrid Tables and insertions

4. Conclusions and further work
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A (very) short intro to hashing
Problem: represent set from large universe K (e.g., IP addresses)
> : init, insert, lookup, delete

> Implementations:
LinkedList (GH), Array (GH), balanced tree (), hash-tables ()

Hash-tables solve the problem of the array “solution”

» array H of size M much smaller than |K],

> hash function h: K - Zs,

» store x € K in slot H[h(z) mod M].
... but there are surely many y with h(x) = h(y) mod M ? = collision
Hash-functions must

» avoid collisions as much as possible,

> be fast to compute.
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A (very) short intro to hashing

We still have to decide what to do in case of a collision:
» Separate chaining: use a linked-list at each slot H 3],

» Internal chaining: put key somewhere else (where?) in H.
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We still have to decide what to do in case of a collision:
» Separate chaining: use a linked-list at each slot H 3],

» Internal chaining: put key somewhere else (where?) in H.

but what if
» Separate chaining: linked-lists are very long ?
> Internal chaining: array H is full ?

. rehash into larger array H'
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Hashmap mechanism

Lua's hashmap consists of
» an array H of size M =2™,
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Hashmap mechanism
Lua's hashmap consists of
> an array H of size M =2™,
» entries: key, value, index of next entry in chain

0 1 2 3 4 5 6 7

124 a d b e c

H | 20 8 8 12 | 21 | 11
7 5 nil nil nil 6

~_ 7

= internal chaining
» for x integer, hash function h(z) = x mod M,

516 SEARCHING 6.4
when K is odd, and this will lead to a substantial bias in many files. It would
be even worse to let M be a power of the radix of the computer, since K mod M
would then be simply the least significant digits of K (independent of the other
digits). Similarly we can argue that M probably shouldn’t be a multiple of 3;

Figure: Extract from The Art of Computer Programming (vol. 3)
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Hashmap mechanism: hash function

Not immediate that A may be a bad choice
» fast for integers:  mod M = z&(M - 1),
» more involved for strings:
unsigned int luaS_hash (const char *str,

unsigned int seed) {

unsigned int h = seed ~ cast_uint(1l);
for (; 1 > 0; 1--)

h "= ((h<<5) + (h>>2) + cast_byte(str[l - 11))

size_t 1,

>

return h;
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Hashmap mechanism: hash function

Not immediate that A may be a bad choice
» fast for integers:  mod M = z&(M - 1),
» more involved for strings:

unsigned int luaS_hash (const char *str, size_t 1,
unsigned int seed) {

unsigned int h = seed ~ cast_uint(1l);
for (; 1 > 0; 1--)
h "= ((h<<5) + (h>>2) + cast_byte(str[l - 11))

5
return h;

}

In this talk we do not discuss the choice of the hash-function h,

Base assumption
The function 2 — h(xz) mod M is roughly uniform J
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Hashmap mechanism: insertion
Insertions work as follows: we want to insert key x

> if position h(z) free = insert

nil

h(a) =4, h(b) =4,

10/26



Hashmap mechanism: insertion
Insertions work as follows: we want to insert key x

> if position h(z) free = insert
... else position h(z) is occupied by key v,
» if h(y) = h(x) = put z into a , update chain

pos(y) — pos(z) - ... to pos(y) - pos(x) — pos(z) — ...

0 1 2 3 4 5 6 7
b

a
H 11 44

nil

N—

h(a) =4, h(b) =4, h(d) =4,

10/26



Hashmap mechanism: insertion
Insertions work as follows: we want to insert key x
> if position h(z) free = insert
... else position h(z) is occupied by key v,

» if h(y) = h(x) = put z into a , update chain

pos(y) — pos(z) - ... to pos(y) - pos(x) — pos(z) — ...

0 1 2 3 4 5 6 7
d b
H 11 2 | 44
6 7 nil
\_/‘TU

h(a) =4, h(b) =4, h(d) =4, h(e) =7,

10/26



Hashmap mechanism: insertion
Insertions work as follows: we want to insert key x
> if position h(z) free = insert
... else position h(z) is occupied by key v,

» if h(y) = h(x) = put z into a , update chain

pos(y) — pos(z) - ... to pos(y) - pos(x) — pos(z) — ...

> if A(y) # h(xz) = we migrate y into a

, updating its
chain and put x at position h(z).
0 1 2 3 4 5 6 7
a b d e
H 11| 4 | 2 0
6 nil 5 nil
\DZ‘/

h(a) =4, h(b) =4, h(d) = 4, h(e) =T, h(£) = 7

10/26



Hashmap mechanism: insertion
Insertions work as follows: we want to insert key x
> if position h(z) free = insert
... else position h(z) is occupied by key v,

» if h(y) = h(x) = put z into a , update chain

pos(y) — pos(z) - ... to pos(y) - pos(x) — pos(z) — ...

> if A(y) # h(xz) = we migrate y into a

, updating its
chain and put x at position h(z).
0 1 2 3 4 5 6 7
a b d e
H 11| 4 | 2 0
6 nil 5 nil
~N_ >

h(a) =4, h(b) =4, h(d) = 4, h(e) =T, h(£) = 7

10/26



Hashmap mechanism: insertion
Insertions work as follows: we want to insert key x

> if position h(z) free = insert
... else position h(z) is occupied by key v,
» if h(y) = h(x) = put z into a , update chain

pos(y) — pos(z) - ... to pos(y) - pos(x) — pos(z) — ...

> if A(y) # h(xz) = we migrate y into a , updating its
chain and put x at position h(z).
0 1 2 3 4 5 6 7
f a b d e
H 44 11 44 2 0
nil 6 nil 5 3

“No—

h(a) =4, h(b) =4, h(d) = 4, h(e) =T, h(£) = 7

10/26



Hashmap mechanism: insertion
Insertions work as follows: we want to insert key x

> if position h(z) free = insert
... else position h(z) is occupied by key v,
» if h(y) = h(x) = put z into a , update chain

pos(y) — pos(z) - ... to pos(y) - pos(x) — pos(z) — ...

> if A(y) # h(xz) = we migrate y into a , updating its
chain and put x at position h(z).
0 1 2 3 4 5 6 7
f a b d e
H 44 11 44 2 0
nil 6 nil 5 3

N
h(a) =4, h(b) =4, h(d) = 4, h(e) =T, h(£) = 7

. pointer from right to left.

10/26



Hashmap mechanism: insertion
Insertions work as follows: we want to insert key x

> if position h(z) free = insert
... else position h(z) is occupied by key v,
» if h(y) = h(x) = put z into a , update chain

pos(y) — pos(z) - ... to pos(y) - pos(x) — pos(z) — ...

> if A(y) # h(xz) = we migrate y into a , updating its
chain and put x at position h(z).
0 1 2 3 4 5 6 7
f a b d e
H 44 11 44 2 0
nil 6 nil 5 3

“No—

h(a) =4, h(b) =4, h(d) = 4, h(e) =T, h(£) = 7

. pointer from right to left. If pointer exits, rehash.
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Hashmap mechanism: deletion

Deletions are simple

» value is marked as nil : equivalent to H[x] =nil,
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» value is marked as nil : equivalent to H[x] =nil,
» coherent with semantics: if x ¢ H = H[x] evaluates nil,

» chaining (next cell) kept intact.

Deleted position k
» can be reused to insert x when h(x) =k,

» not taken into account by free position pointer
== necessary to keep previous chaining

... deleted spots are cleaned up during
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Hashmap mechanism: rehashing

Finding a free position: use pointer starting at end and moving to
the left. If pointer exits, we

» Hashtable is then full, maybe with deleted cells.
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Hashmap mechanism: rehashing

Finding a free position: use pointer starting at end and moving to

the left. If pointer exits, we

» Hashtable is then full, maybe with deleted cells.

» Count actually used cells n,

» Set size M = 2", with smallest m such that n +1 < 2™,
== +1 for inserted element.

Worst-case scenario construction
> insert until filling hashtable of size M = 2™,
» do M iterations: (deletion+insertion),

> insertions induce rehash unless deleted cell is picked (p = 1/M)

Expected complexity ©(M?) for 3M operations.

... but it is not very realistic, users do not behave this way (?)
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The probabilistic model
We set a more interesting yet simple model

Probabilistic model
Fix p > % and apply T insertion/deletions from an empty table:
> with probability p insert a new element,

» with probability 1 — p delete an element among present ones.
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> with probability p insert a new element,

» with probability 1 — p delete an element among present ones.

Hashtable tends to grow: # keys » pT — (1 -p)T = (2p-1)T

Theorem (Martinez,Nicaud, R 2022)
With high probability, Lua uses (7' logT') time for this process. J

> Intuition:
» Each costs linear time ©(M). ®
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When rehashing table of size M

» free position pointer does not take into account deleted cells,
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When rehashing table of size M

» free position pointer does not take into account deleted cells,
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. new hashtable has same size, even if § small

... and we have f = —1 free cells after rehash

Example: Before and after rehash (insertion —18), 6 =1

Lo LTl s Tlslo] [o Toslo < Lo

Nt

» such rehash is not of much use: only cleans (few) deleted cells

. useless rehashes go on until we hit a rehash with § =0
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= #keys =271 +1 and 2™7! -1 free spots.

» But then random deletions slow down growth of M:
== from f free spots, we obtain v f after next rehash.

Lemma

If hashmap has size M and just after a rehash it contains f > /M free
spots, at the next rehash it still has size M and contains at least yf free

spots (whp).

... at least log M rehashes to increase M
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The probabilistic model: proof sketch

With (very) high probability:
> the hashtable is never empty after ¢ = 0,
> we rehash at some point.

Under these simplifying assumptions, between two rehashes, the number
of deleted cells satisfies the recurrence (starting from d;, = 0)

0 —1 with probability % [insertion at deleted key],
Ot+1 =130y with probability p(l - %’) [insertion at free cell],
d; +1 with probability 1 -p [deletion].
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The probabilistic model: proof sketch

0; —1 with probability % [insertion at deleted key],
Ot41 =14 Oy with probability p(l - %) [insertion at free cell],
0t +1 with probability 1-p [ deletion].

» Equilibrium point at §; ~ %M,
® when d; < %M tendency to increase,
® when §; > I%M tendency to decrease,
> occurs before reaching equilibrium

... at the beginning d; increases linearly
... as we approach equilibrium, increase weakens
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Evolution of number of deleted cells ;: linear increase
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Evolution of number of deleted cells ;: linear increase

0+ —1 with probability LA‘;‘ [insertion at deleted key],
der1 =16 with probability p (1 - 2t) [insertion at free cell],
d¢+1 with probability 1-p [ deletion].

18/26



Evolution of number of deleted cells ;: linear increase

d: —1 with probability & P‘S’ [insertion at deleted key],
Ot+1 =4 Oy with probability p (1 - %) [insertion at free celll],
0 +1 with probability 1-p [ deletion].

Let freeg free (unused) cells after last rehash (set ¢ = 0)

Remark: there is a linear regime for a proportion of time
After t = [%freeoj < freeq steps

freep 1-p
Bca-p ez,

Ad: =1 still twice as likely as Ay = —1.
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Evolution of number of deleted cells d;: stopping time

> By timet= [%freeoj, number of deleted cells §; increased linearly.

> |t remains to show that it will not decrease
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Evolution of number of deleted cells d;: stopping time

> By timet= [%freeoj, number of deleted cells §; increased linearly.

> |t remains to show that it will not decrease

Lemma

If ¢> Tl—l' number of operations before next rehash 7 satisfies

7T <c-freeg

with high probability.

.. and so only a linear number of steps remain

Lemma
With high probability equilibrium has never been reached by time T.J
... and at worse d; looks like a  — % random walk (close to 7)

19/26
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Fixing the Lua hash table

Potential solutions:
> implement real deletions
. requires several changes (update chains, list of available cells)
> keep a minimum proportion of free cells after rehashing

. we will implement it now in 2 minutes for > 20%

. . . . . B
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- 3
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number of operations 7' number of operations (logscale)

Ensuring a proportion S8 € (0,1) of empty cells
> we require at least S M operations before rehashing again
» amortized #insertions per operation < (M + SM)/(BM) =1+ 37!
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Hybrid Tables and insertions

® Rehashes into same size hashtables pile up to Q(T'logT),
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Hybrid Tables and insertions

® Rehashes into same size hashtables pile up to Q(T'logT),
® More precisely it is ©(T logT).

And without deletions?
® Problem arises when considering effects of deletions.

@ The hybrid data-structure presents a similar issue:
using the array-part “simulates” deletions on the hash-part

Proposition [only insertions] J

Inserting n elements into Lua's table takes ©(nlogn) in the worst case.

Example: inserting —(2% - 1), -(2¥ - 2),...,-1,0,1,...,2F GH
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Hybrid Tabes mechanism: principle

» array-part corresponds to interval [1,n], n =27,
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Hybrid Tabes mechanism: principle

> array-part corresponds to

» the interval must be more than half-full, > n/2 elements,

>

hashpart

hashpart

arraypart

[1,n], n=27,

n =27 chosen during rehash.

1 2
5~al|l9-s[ll>g[7—b arraypart p c
adding 12— f
triggering a rehash
12 fl9 s 11+-g
1 2 3 4 6 7 8
p c c a b
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Hybrid Tabes mechanism: principle

> array-part corresponds to

» the interval must be more than half-full, > n/2 elements,

>

hashpart

hashpart

arraypart

[1,n], n=27,

n =27 chosen during rehash.

1 2
5 al9-s(llgl70b arraypart P c
adding 12— f
triggering a rehash
12 fl9 s 11+-g
1 2 3 4 6 7 8
p c c a b

. rehash just emulated a deletion in the hash-part !
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Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
» keys —(2F -1),-(2F-2),...,0 go into hash-part

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
» keys —(2F -1),-(2F-2),...,0 go into hash-part = M = 2* full

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
» keys —(2F -1),-(2F-2),...,0 go into hash-part = M = 2* full

> key 1 induces rehash

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
» keys —(2F -1),-(2F-2),...,0 go into hash-part = M = 2* full

> key 1 induces ... but goes into the array-part

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
» keys —(2F -1),-(2F-2),...,0 go into hash-part = M = 2* full

> key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
» keys —(2F -1),-(2F-2),...,0 go into hash-part = M = 2* full

> key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

> key 2 induces

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
» keys —(2F -1),-(2F-2),...,0 go into hash-part = M = 2* full

> key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

> key 2 induces ... and goes into the array-part

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
» keys —(2F -1),-(2F-2),...,0 go into hash-part = M = 2* full

> key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

> key 2 induces ... and goes into the array-part
= array-part A = 2!, hash-part M = 2%,

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
keys —(2F —1),-(2% - 2),...,0 go into hash-part = M =2 full

v

v

key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

v

key 2 induces ... and goes into the array-part
= array-part A = 2!, hash-part M = 2%,

v

key 3 induces

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
keys —(2F —1),-(2% - 2),...,0 go into hash-part = M =2 full

v

v

key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

v

key 2 induces ... and goes into the array-part
= array-part A = 2!, hash-part M = 2%,

v

key 3 induces ... and goes into the array-part

23/26



Hybrid Tables: nlogn example 1

Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
keys —(2F —1),-(2% - 2),...,0 go into hash-part = M =2 full

v

v

key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

v

key 2 induces ... and goes into the array-part
= array-part A = 2!, hash-part M = 2%,

v

key 3 induces ... and goes into the array-part
= array-part A =22, hash-part M = 2F.

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
keys —(2F —1),-(2% - 2),...,0 go into hash-part = M =2 full

v

v

key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

v

key 2 induces ... and goes into the array-part
= array-part A = 2!, hash-part M = 2%,

v

key 3 induces ... and goes into the array-part
= array-part A =22, hash-part M = 2F.

» key 4 is inserted directly into array-part [1,22].

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
keys —(2F —1),-(2% - 2),...,0 go into hash-part = M =2 full

v

v

key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

v

key 2 induces ... and goes into the array-part
= array-part A = 2!, hash-part M = 2%,

v

key 3 induces ... and goes into the array-part
= array-part A =22, hash-part M = 2F.

» key 4 is inserted directly into array-part [1,22].

v

key 5 induces

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
keys —(2F —1),-(2% - 2),...,0 go into hash-part = M =2 full

v

v

key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

v

key 2 induces ... and goes into the array-part
= array-part A = 2!, hash-part M = 2%,

v

key 3 induces ... and goes into the array-part
= array-part A =22, hash-part M = 2F.

» key 4 is inserted directly into array-part [1,22].

v

key 5 induces ... and goes into the array-part

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
keys —(2F —1),-(2% - 2),...,0 go into hash-part = M =2 full

v

v

key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

v

key 2 induces ... and goes into the array-part
= array-part A = 2!, hash-part M = 2%,

v

key 3 induces ... and goes into the array-part
= array-part A =22, hash-part M = 2F.

» key 4 is inserted directly into array-part [1,22].

v

key 5 induces ... and goes into the array-part
= array-part A =23, hash-part M = 2F.

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
» keys —(2F -1),-(2F-2),...,0 go into hash-part = M = 2* full

> key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

v

key 2 induces ... and goes into the array-part
= array-part A = 2!, hash-part M = 2%,

v

key 3 induces ... and goes into the array-part
= array-part A =22, hash-part M = 2F.

» key 4 is inserted directly into array-part [1,22].

v

key 5 induces ... and goes into the array-part
= array-part A =23, hash-part M = 2F.

v

keys 2/ + 1,5 > 0, induce , rest inserted in array-part directly

23/26



Hybrid Tables: nlogn example 1
Example: inserting —(2% - 1), -(2¥-2),...,-1,0,1,...,2F
keys —(2F —1),-(2% - 2),...,0 go into hash-part = M =2 full

v

v

key 1 induces ... but goes into the array-part
= array-part A =2°, hash-part M = 2F.

v

key 2 induces ... and goes into the array-part
= array-part A = 2!, hash-part M = 2%,

v

key 3 induces ... and goes into the array-part
= array-part A =22, hash-part M = 2F.

» key 4 is inserted directly into array-part [1,22].

v

key 5 induces ... and goes into the array-part
= array-part A =23, hash-part M = 2F.

» keys 27 +1,5 >0, induce , rest inserted in array-part directly
= time Q(k - 2¥)
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Hybrid Tables: nlogn example 2

A permutation of [1,...,n]
Permutations of [1,...,n] are a natural choice:

> they come up in practice in many contexts,

> they give the array-part a good shot at being used, yet ...
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Hybrid Tables: nlogn example 2

A permutation of [1,...,n]

Permutations of [1,...,n] are a natural choice:
> they come up in practice in many contexts,

> they give the array-part a good shot at being used, yet ...

Example: inserting 2-2F +1,2-2F 42 ... 3.2~ 1,2 ... 2F
> mechanism is exactly as in previous example,
» keys 2-2F+1,2-2F+2,...,3-2% go into hash-part = M = 2 full,

> keys 1,2,3,5,9,... induce , while rest inserted into array-part

... but this is rather unlikely for a permutation
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Hybrid Tables: random permutation
Random model starting from an empty table:

» Consider random permutation 7 of [n]
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Random model starting from an empty table:
» Consider random permutation 7 of [n]

» Insert elements in order w(1),7(2) ..., m(n).
Fix c < % and consider an arbitrary g(n) - o0, e.g., g(n) =log*(n).

Lemma

For every time ¢ < cn, none of S; = [1,27] for 27 > g(n) is half-full with
probability tending to one.
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Hybrid Tables: random permutation
Random model starting from an empty table:
» Consider random permutation 7 of [n]

» Insert elements in order w(1),7(2) ..., m(n).
Fix c < % and consider an arbitrary g(n) - o0, e.g., g(n) =log*(n).

Lemma

For every time ¢ < cn, none of S; = [1,27] for 27 > g(n) is half-full with
probability tending to one.

== array part not really used and complexity essentially linear

Theorem (Martinez,Nicaud,R 2022)

Inserting random permutation takes time @ (n g(n)) provided that n
does not approximate powers of two from above?.

°Fix be (172)1 ne I\Ib = szo{k : 2Jb <k< 2j+1}_
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Recap and conclusions

® Lua's hybrid data-structure is an interesting idea.

@® We have presented a simple and natural probabilistic model
revealing shortcomings in Lua's hashtables.
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Recap and conclusions

® Lua's is an interesting idea.

@® We have presented a simple and natural probabilistic model

revealing shortcomings in Lua's hashtables.

® Issue can be fixed by ensuring more room when rehashing.

® This would also fix the hybrid part.

Conclusions
® Will Lua conceptors take this into account?

® Important to model and study algorithms implemented in practice.
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Thank you!
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