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Introduction

L Aim: study and model actual implementations

Y Engineers sometimes choose innovative implementations

e.g., TimSort in Python.

Y Study choices in depth, make recommendations.

L The Lua programming language

Y Scripting language widely used in the gaming industry,

Y Efficient, lightweight (few Kb of C code!), embeddable.

� Lua 5.0 introduced several innovations,
among them a new Table structure.
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The Lua programming language1

1Copyright © 1994–2022 Lua.org, PUC-Rio.
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Introduction: table structure in Lua

L Only data-structuring mechanism in Lua

Y assignment H[x]=y, any types of x and y.

L Implementation

Y originally a simple hash-table up to Lua 4.

Y Lua 5 introduced a hybrid hash-array implementation,

Figure: Extract from the book Lua Programming Gems.

L In our work we study this mechanism.
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Introduction: worst case Lua hash-table

Running time:

L insertions and lookups work in amortized O�1�
even if table is full.

L we show there is a degradation if deletions are allowed.

Consider sequences of T insertions/deletions from empty table

Proposition: worst case

There is sequence of operations giving time Θ�T 2�.

L Example requires an unlikely cycle of delete-insert.

L A problem for more realistic scenarios ?
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Introduction: probabilistic model for the hash-table

Our Simple Probabilistic model

Consider p A 1
2 . A random sequence of T insertion/deletions:

L with probability p insert a new element,

L with probability 1 � p delete an element.
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Main result: Lua hash-table

With high probability, complexity is Ω�T logT �. /

We propose potential fixes... which we will see and implement during the talk
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Plan of the talk

1. The Lua hashmap

2. The probabilistic model

3. Hybrid Tables and insertions

4. Conclusions and further work



A (very) short intro to hashing

Problem: represent set from large universe K (e.g., IP addresses)

L Minimal interface: init, insert, lookup, delete

L Implementations:
LinkedList ( ), Array ( ), balanced tree ( ), hash-tables (�)

Hash-tables solve the problem of the array “solution”

L array H of size M much smaller than SKS,
L hash function h�K � ZC0,

L store x > K in slot H�h�x�modM�.
. . . but there are surely many y with h�x� � h�y�modM ? � collision

Hash-functions must

L avoid collisions as much as possible,

L be fast to compute.
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A (very) short intro to hashing

We still have to decide what to do in case of a collision:

L Separate chaining: use a linked-list at each slot H�i�,

L Internal chaining: put key somewhere else (where?) in H.

but what if

L Separate chaining: linked-lists are very long ?

L Internal chaining: array H is full ?

. . . rehash into larger array H �
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Hashmap mechanism

Lua’s hashmap consists of

L an array H of size M � 2m,

L entries: key, value, index of next entry in chain

H
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� internal chaining

L for x integer, hash function h�x� � xmodM ,
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Hashmap mechanism
Lua’s hashmap consists of
L an array H of size M � 2m,
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L for x integer, hash function h�x� � xmodM ,

Figure: Extract from The Art of Computer Programming (vol. 3)
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Hashmap mechanism: hash function

Not immediate that h may be a bad choice

L fast for integers: xmodM � x&�M � 1�,

L more involved for strings:

unsigned int luaS_hash (const char *str , size_t l,

unsigned int seed) {

unsigned int h = seed ^ cast_uint(l);

for (; l > 0; l--)

h ^= ((h<<5) + (h>>2) + cast_byte(str[l - 1]))

;

return h;

}

In this talk we do not discuss the choice of the hash-function h,

Base assumption

The function x( h�x� modM is roughly uniform
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Hashmap mechanism: insertion
Insertions work as follows: we want to insert key x

L if position h�x� free � insert

. . . else position h�x� is occupied by key y,

L if h�y� � h�x� � put x into a free position, update chain

pos�y�� pos�z�� . . . to pos�y�� pos�x�� pos�z�� . . .

L if h�y� x h�x� � we migrate y into a free position, updating its
chain and put x at position h�x�.

H

0 1 2 3 4 5 6 7

e
0

nil

e
0
3

a
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b
44
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b
44
nil

f
44
nil

d
-2
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h�a� � 4, h�b� � 4,

Finding free position: pointer from right to left.

If pointer exits, rehash.
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Hashmap mechanism: deletion

Deletions are simple

L value is marked as nil : equivalent to H�x� � nil,

L coherent with semantics: if x ~>H �H�x� evaluates nil,

L chaining (next cell) kept intact.

Deleted position k

L can be reused to insert x when h�x� � k,

L not taken into account by free position pointer
Ô� necessary to keep previous chaining

. . . deleted spots are cleaned up during rehashing
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Hashmap mechanism: rehashing

Finding a free position: use pointer starting at end and moving to
the left. If pointer exits, we rehash.

L Hashtable is then full, maybe with deleted cells.

L Count actually used cells n,

L Set size M � 2m, with smallest m such that n � 1 B 2m,
Ô� �1 for inserted element.

Worst-case scenario construction

L insert until filling hashtable of size M � 2m,

L do M iterations: (deletion+insertion),

L insertions induce rehash unless deleted cell is picked (p � 1~M)

Expected complexity Θ�M2� for 3M operations.

. . . but it is not very realistic, users do not behave this way (?)
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The probabilistic model

We set a more interesting yet simple model

Probabilistic model

Fix p A 1
2 and apply T insertion/deletions from an empty table:

L with probability p insert a new element,

L with probability 1 � p delete an element among present ones.

Hashtable tends to grow: # keys � pT � �1 � p�T � �2p � 1�T

Theorem (Mart́ınez,Nicaud, R 2022)

With high probability, Lua uses Ω�T logT � time for this process.

L Intuition: Large number of useless rehashes

L Each rehash costs linear time Θ�M�. /
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Intuition: useless rehash

When rehashing table of size M

L free position pointer does not take into account deleted cells,

L if 0 @ δ @M~2 deleted cells remain,

. . . new hashtable has same size, even if δ small

. . . and we have f � δ � 1 free cells after rehash

Example: Before and after rehash (insertion �18), δ � 1

0 1 2 3 4 5 6 7

0 -15 -14 ��-13 -5 -11 -16 -17

0 1 2 3 4 5 6 7

0 -15 -14 -5 -16 -11 -18 -17

L such rehash is not of much use: only cleans (few) deleted cells

. . . useless rehashes go on until we hit a rehash with δ � 0
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The probabilistic model: proof sketch

Theorem (Mart́ınez,Nicaud, R 2022)

With high probability, Lua uses Ω�T logT � time for this process.

L Number of keys in hashmap after t operations � �2p � 1�t,
with high probability size M only increases

L At some point rehash into size M � 2m of order Θ�T �:
Ô� #keys � 2m�1

� 1 and 2m�1
� 1 free spots.

L But then random deletions slow down growth of M :
Ô� from f free spots, we obtain γf after next rehash.

Lemma

If hashmap has size M and just after a rehash it contains f Q

º
M free

spots, at the next rehash it still has size M and contains at least γf free

spots (whp).

. . . at least logM rehashes to increase M
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The probabilistic model: proof sketch

With (very) high probability:

L the hashtable is never empty after t � 0,

L we rehash at some point.

Under these simplifying assumptions, between two rehashes, the number
of deleted cells satisfies the recurrence (starting from δt0 � 0)

δt�1 �

¢̈̈̈
¦̈̈̈
¨̈¤

δt � 1 with probability pδt
M

�insertion at deleted key�,
δt with probability p �1 � δt

M
� �insertion at free cell�,

δt � 1 with probability 1 � p �deletion�.
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L Equilibrium point at δt �
1�p
p
M ,

e when δt @
1�p
p
M tendency to increase,

e when δt A
1�p
p
M tendency to decrease,

L Rehash occurs before reaching equilibrium
. . . at the beginning δt increases linearly
. . . as we approach equilibrium, increase weakens
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Evolution of number of deleted cells δt: linear increase
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Example: first rehash for M= 210

δt
(1− p) · x
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Let free0 free (unused) cells after last rehash (set t � 0)

Remark: there is a linear regime for a proportion of time

After t � 
 1�p
p
free0� @ free0 steps

pδt
M

B �1 � p�
free0

M
B
1 � p

2
,

∆δt � 1 still twice as likely as ∆δt � �1.
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Evolution of number of deleted cells δt: stopping time

L By time t � 
 1�p
p
free0�, number of deleted cells δt increased linearly.

L It remains to show that it will not decrease

Lemma

If c A 1
2p�1 , number of operations before next rehash τ satisfies

τ B c � free0

with high probability.

. . . and so only a linear number of steps remain

Lemma

With high probability equilibrium has never been reached by time τ .

. . . and at worse δt looks like a 1
2
�

1
2
random walk (close to τ)
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Fixing the Lua hash table
Potential solutions:

L implement real deletions

. . . requires several changes (update chains, list of available cells)

L keep a minimum proportion of free cells after rehashing

. . . we will implement it now in 2 minutes for C 20%

0 2 4 6 8 �106

0

2

4

6

8

10

number of operations T

t
o
t
a
l
t
i
m
e

�s
e
c
o
n
d
s
�

216 217 218 219 220 221 222 223

0.6

0.8

1

1.2

1.4

1.6

number of operations (logscale)

am
or
ti
ze
d
ti
m
e
p
er

op
er
at
io
n
(µ
s
~o
p
)

Ensuring a proportion β > �0,1� of empty cells

L we require at least βM operations before rehashing again

L amortized #insertions per operation B �M � βM�~�βM� � 1 � β�1
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Hybrid Tables and insertions

e Rehashes into same size hashtables pile up to Ω�T logT �,

e More precisely it is Θ�T logT �.

And without deletions?

e Problem arises when considering effects of deletions.

e The hybrid data-structure presents a similar issue:
using the array-part “simulates” deletions on the hash-part

Proposition [only insertions]

Inserting n elements into Lua’s table takes Θ�n logn� in the worst case.

Example: inserting ��2k � 1�,��2k � 2�, . . . ,�1,0,1, . . . ,2k
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Hybrid Tabes mechanism: principle

L array-part corresponds to interval �1, n�, n � 2j ,

L the interval must be more than half-full, A n~2 elements,

L maximum n � 2j chosen during rehash.

5( a 9( s 11( g 7( bhashpart

1 2 3 4

p c carraypart

adding 12( f

triggering a rehash

12( f 9( s 11( ghashpart

1 2 3 4 5 6 7 8

p c c a barraypart

. . . rehash just emulated a deletion in the hash-part !
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Hybrid Tables: n logn example 1

Example: inserting ��2k � 1�,��2k � 2�, . . . ,�1,0,1, . . . ,2k

L keys ��2k � 1�,��2k � 2�, . . . ,0 go into hash-part

� M � 2k full

L key 1 induces rehash . . . but goes into the array-part
� array-part A � 20, hash-part M � 2k.

L key 2 induces rehash . . . and goes into the array-part
� array-part A � 21, hash-part M � 2k.

L key 3 induces rehash . . . and goes into the array-part
� array-part A � 22, hash-part M � 2k.

L key 4 is inserted directly into array-part �1,22�.
L key 5 induces rehash . . . and goes into the array-part

� array-part A � 23, hash-part M � 2k.
. . .

L keys 2j � 1,j C 0, induce rehash, rest inserted in array-part directly

Ô� time Ω�k � 2k�
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� array-part A � 23, hash-part M � 2k.

. . .

L keys 2j � 1,j C 0, induce rehash, rest inserted in array-part directly

Ô� time Ω�k � 2k�
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Hybrid Tables: n logn example 2
A permutation of �1, . . . , n�

Permutations of �1, . . . , n� are a natural choice:

L they come up in practice in many contexts,

L they give the array-part a good shot at being used, yet . . .

Example: inserting 2 � 2k � 1,2 � 2k � 2, . . . ,3 � 2k,1,2, . . . ,2k

L mechanism is exactly as in previous example,

L keys 2 � 2k � 1,2 � 2k � 2, . . . ,3 � 2k go into hash-part � M � 2k full,

L keys 1,2,3,5,9, . . . induce rehash, while rest inserted into array-part

. . . but this is rather unlikely for a permutation
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Hybrid Tables: random permutation

Random model starting from an empty table:

L Consider random permutation π of �n�

L Insert elements in order π�1�, π�2� . . . , π�n�.

Fix c @ 1
2
and consider an arbitrary g�n��ª, e.g., g�n� � log��n�.

Lemma

For every time t B cn, none of Sj � �1,2j� for 2j C g�n� is half-full with
probability tending to one.

Ô� array part not really used and complexity essentially linear

Theorem (Mart́ınez,Nicaud,R 2022)

Inserting random permutation takes time O�ng�n�� provided that n
does not approximate powers of two from abovea.

aFix b > �1,2�, n > Nb �� �jC0�k � 2jb @ k B 2j�1�.
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Recap and conclusions

e Lua’s hybrid data-structure is an interesting idea.

e We have presented a simple and natural probabilistic model
revealing shortcomings in Lua’s hashtables.

e Issue can be fixed by ensuring more room when rehashing.

e This would also fix the hybrid part.

Conclusions

e Will Lua conceptors take this into account?

e Important to model and study algorithms implemented in practice.
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Thank you!
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