Convergence and the Harmonic series

Pablo Rotondo

February 19, 2024

Proposition 1. Suppose q(k) > 0 is a sequence such that $\sum_k q(k) < \infty$. Then, for every $\varepsilon > 0$, $D = D_{\varepsilon} = \{j : q(j) \ge \varepsilon/j\}$ has natural density 0, namely

$$\lim_{n \to \infty} \frac{1}{n} \left| \{ j \le n : q(j) \ge \varepsilon/j \} \right| = 0.$$

Proof. Suppose otherwise. Then there is a sub-sequence (n_k) of the positive integers such that $\frac{1}{n_k} |\{j \le n_k : q(j) \ge \varepsilon/j\}| \to \delta$ for some $\delta > 0$. By taking further a sub-sequence if necessary, we may assume without loss of generality that $n_k/n_{k+1} \to 0$. Let us remark then that this implies $\frac{1}{n_{k+1}} |\{n_k < j \le n_{k+1} : q(j) \ge \varepsilon/j\}| \to \delta$.

Fix any $\delta' > 0$ with $\delta' < \delta$. Then, for all large enough $k \ge K$ we have

$$\frac{1}{n_{k+1}} |\{n_k < j \le n_{k+1} : q(j) \ge \epsilon/j\}| > \delta'.$$

Let us decompose the partial sums of $\sum q(j) < \infty$ as follows

$$\sum_{j=1}^{n_k} q(j) = \sum_{j=1}^{n_1} q(j) + \sum_{i=1}^{k-1} \sum_{j=n_i+1}^{n_{i+1}} q(j).$$

Let us note that here, for $i \geq K$,

$$\sum_{j=n_i+1}^{n_{i+1}} q(j) \ge \sum_{n_i < j \le n_{i+1}: q(j) \ge \varepsilon/j} (\varepsilon/j) \ge \frac{\varepsilon}{n_{i+1}} \left| \{ n_i < j \le n_{i+1}: q(j) \ge \varepsilon/j \} \right| > \varepsilon \, \delta' \, .$$

Therefore we deduce that, for $k \geq K$,

$$\sum_{j=1}^{n_k} q(j) \ge (k-K) \varepsilon \, \delta' \to \infty \,,$$

as $k \to \infty$, a contradiction to the convergence of the series $\sum q(j)$.

This means that if you pick j uniformly at random from $\{1, \ldots, n\}$, the probability of having $jq(j) \ge \varepsilon$ gets smaller and smaller as $n \to \infty$. This can be made precise as follows. Consider U_n a uniform real number from [0, 1], and let $X_n := \lceil nU_n \rceil q(\lceil nU_n \rceil)$. Then $X_n \to 0$ in probability. Note that U_n need not depend on n.