Convergence and the Harmonic series

Pablo Rotondo

February 19, 2024

Proposition 1. Suppose $q(k)>0$ is a sequence such that $\sum_{k} q(k)<\infty$. Then, for every $\varepsilon>0, D=D_{\varepsilon}=\{j: q(j) \geq \varepsilon / j\}$ has natural density 0 , namely

$$
\lim _{n \rightarrow \infty} \frac{1}{n}|\{j \leq n: q(j) \geq \varepsilon / j\}|=0
$$

Proof. Suppose otherwise. Then there is a sub-sequence $\left(n_{k}\right)$ of the positive integers such that $\frac{1}{n_{k}}\left|\left\{j \leq n_{k}: q(j) \geq \varepsilon / j\right\}\right| \rightarrow \delta$ for some $\delta>0$. By taking further a sub-sequence if necessary, we may assume without loss of generality that $n_{k} / n_{k+1} \rightarrow 0$. Let us remark then that this implies $\frac{1}{n_{k+1}}\left|\left\{n_{k}<j \leq n_{k+1}: q(j) \geq \varepsilon / j\right\}\right| \rightarrow \delta$.
Fix any $\delta^{\prime}>0$ with $\delta^{\prime}<\delta$. Then, for all large enough $k \geq K$ we have

$$
\frac{1}{n_{k+1}}\left|\left\{n_{k}<j \leq n_{k+1}: q(j) \geq \epsilon / j\right\}\right|>\delta^{\prime} .
$$

Let us decompose the partial sums of $\sum q(j)<\infty$ as follows

$$
\sum_{j=1}^{n_{k}} q(j)=\sum_{j=1}^{n_{1}} q(j)+\sum_{i=1}^{k-1} \sum_{j=n_{i}+1}^{n_{i+1}} q(j)
$$

Let us note that here, for $i \geq K$,

$$
\sum_{j=n_{i}+1}^{n_{i+1}} q(j) \geq \sum_{n_{i}<j \leq n_{i+1}: q(j) \geq \varepsilon / j}(\varepsilon / j) \geq \frac{\varepsilon}{n_{i+1}}\left|\left\{n_{i}<j \leq n_{i+1}: q(j) \geq \varepsilon / j\right\}\right|>\varepsilon \delta^{\prime} .
$$

Therefore we deduce that, for $k \geq K$,

$$
\sum_{j=1}^{n_{k}} q(j) \geq(k-K) \varepsilon \delta^{\prime} \rightarrow \infty
$$

as $k \rightarrow \infty$, a contradiction to the convergence of the series $\sum q(j)$.
This means that if you pick j uniformly at random from $\{1, \ldots, n\}$, the probability of having $j q(j) \geq \varepsilon$ gets smaller and smaller as $n \rightarrow \infty$. This can be made precise as follows. Consider U_{n} a uniform real number from $[0,1]$, and let $X_{n}:=\left\lceil n U_{n}\right\rceil q\left(\left\lceil n U_{n}\right\rceil\right)$. Then $X_{n} \rightarrow 0$ in probability. Note that U_{n} need not depend on n.

