Analytic Combinatorics of Unlabeled Objects

Set of exercises 1

September 22, 2025

1. Generating functions

Exercise 1

Using generating functions prove the following:

- a) $\sum_{j=0}^{n} {j \choose p} = {n+1 \choose p+1}$. [Hockey-stick identity]
- b) $\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$.
- c) $\sum_{j=1}^{n} j^{p} \sim n^{p+1}/(p+1)$ for every integer $p \ge 0$.
- d) $\sum_{j} \binom{n}{j} \binom{m}{k-j} = \binom{n+m}{k}$. [Vandermonde's identity]

2. Arithmetic progressions in a generating function

Question

Given an OGF $F(z) = \sum_{n\geq 0} a(n) z^n$, and $q \in \mathbb{Z}_{\geq 1}$ how to obtain an OGF for $\sum_{n\geq 0} a(n\,q) \, z^{n\,q}$?

a) Let $\omega = \exp(2\pi i/q)$. Prove that

$$\sum_{n\geq 0} a(n\,q)\,z^{n\,q} = \frac{1}{q} \sum_{k=0}^{q-1} F(z\omega^k)\,. \tag{1}$$

b) Using (1), prove that if F has radius of convergence R_F , for $0 \le c < R_F$,

$$a(0) = \int_0^1 F(ce^{2\pi it})dt$$
.

1

c) Obtain a formula for $\sum_{n\geq 0} a(n\,q+r)\,z^{n\,q+r}$ with $r\in\{0,\ldots,q-1\}$.

3. Second class Stirling Numbers

Second class Stirling Numbers

The Stirling numbers of the second kind $\binom{n}{k}$ count the number of partitions of a set of n elements into k non-empty subsets. Without loss of generality, we suppose the set of n elements is $\lceil n \rceil = \{1, \ldots, n\}$.

Prove the following identities

a)
$$\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}$$
 for all $n, k \ge 0$.

b)
$$\sum_{n\geq 0} {n \brace k} z^n = \frac{z^k}{(1-z)(1-2z)...(1-kz)}$$
.

Find a formula for $\binom{n}{k}$ by applying partial fractions.

Second class Stirling Numbers II

In this exercise we give a combinatorial interpretation to

$$\sum_{n\geq 0} {n \brace k} z^n = \frac{z^k}{(1-z)(1-2z)\dots(1-kz)}.$$

We define an algorithm. Consider a partition $P = \{S_1, \dots, S_k\}$:

- We keep an list L of the *known* parts from P. Initially L = [].
- We iterate j = 1, ..., n. For iteration j, let $S_j \in P$ with $j \in S$. If S appears in L, write its index. If not, append it and write |V| + 1.

The numbers written belong to [k]. They constitute the backbone

$$P = \{\{4,6,7\},\{1,3\},\{2,5\}\} \mapsto L(P) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{3} & \mathbf{2} & \mathbf{3} & \mathbf{3} \end{pmatrix}$$

Prove that this yields a bijection. Find a combinatorial specification and deduce the OGF of the partitions into k parts, k fixed.

4. Multisets and recurrences

We recall that the class \mathcal{P} of integer partitions is defined by

$$\mathcal{P} = MSet(Seq_{>1}(\mathcal{Z})),$$

where $Seq_{>1}(\mathcal{Z})$ represents the positive integers, \mathbf{k} with size k.

1. Using the OGF, prove that the number of partitions p(n) of n satisfies the following recurrence for $n \ge 1$

$$np(n) = \sum_{j=1}^{n} \sigma(j) \cdot p(n-j),$$

where $\sigma(j)$ is the sum of the positive divisors of j.

2. Consider t(n), the number of unlabeled rooted trees with n vertices (vertices undistinguishable except root). Find a functional equation for the OGF. Derive a recurrence.

¹We define $\binom{n}{k} = 0$ if every n < 0, k < 0 or n < k.