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» Automated testing, benchmark testing

e Correctness and performance of algorithms

» Randomly generated input

e Realistic distribution

e Simple implementation, possibility of theoretical analysis.
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BST-like trees

Target: produce random tree with given number of nodes n.
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BST-like trees

Target: produce random tree with given number of nodes n.

function RandomFormula(n):
if n = 1 then
p := random symbol in AP U{T,L};
return p;
else if n = 2 then
op = random unary operator in {—,X,J,0};
f := RandomFormula(1);
return op f;
else
op = random operator in {—,X,,0,A,V,—, <>, U R},
if op in {—,X,0,0} then
f := RandomFormula(n — 1);

return op f;

else
x := uniform integer in [1,n — 2];
f1 := RandomFormula(z);

f2 := RandomFormula(n — z — 1);
return (f1 op f2);

Figure: Code used in tool 1btt (from TCS) to draw an LTL formula.
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BST-like trees: distribution over unary-binary trees

» G T

BST-like tree distribution is not uniform.
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BST-like tree distribution is not uniform.
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Uniform and BST-like distributions

The uniform distribution:
P naturally maximizes entropy.

» can be sampled efficiently
(Boltzmann,Recursive,Devroye's constrainted GW).

» is amenable to theoretical study (Analytic Combinatorics).
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Uniform and BST-like distributions

The uniform distribution:
P naturally maximizes entropy.

» can be sampled efficiently
(Boltzmann,Recursive,Devroye's constrainted GW).

» is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:
» must be parametrized (prob. of operators).
P is easy to implement and very efficient.

P is often used in the automated checking of tools.

Let us see what happens with uniform expressions first...
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Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,"20) J

Expected size of reduction of uniform tree bounded, as size— oco.
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Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,20) J

Expected size of reduction of uniform tree bounded, as size— oco.

» Reduction based on absorbing pattern P,

® ®
/\ ~P /\ ~P
P T T P

» Wide variety of examples:

Y

i z—0

a b
operator V operator + operator X

» For regular expressions on two letters, constant bound ~ 77.8.
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In our work we
» draw an random BST-like tree expression of size n.
> study size of reduced expressions as n — oc.

» answer the question: do BST-like distributions present the
same flaw as the uniform one?
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In our work we
» draw an random BST-like tree expression of size n.
> study size of reduced expressions as n — oc.

» answer the question: do BST-like distributions present the
same flaw as the uniform one? = we characterize 5 regimes

Experimental expected size (10 000 samples)® on regular expressions
(+,,%) on two letters a, b:
P = (a+ b)* absorbing for union ® = +

10°

8,000 [

g 8
= osf 6 2 6,000,
< o6l z
Y af = 1,000
74 7
= 2 Z 2000}
o 02 °

- . - — . ol L L L L L L L L .
0 02 04 06 08 110 %% 0.2 0.4 0.6 08 1 10% 0 0.2 04 0.6 08 1 10°

size of the regular expression size of the regular expression size of the regular expression

"Left to right (P, pe,p+) : (5,3, 3), (&,3,42), and (5, 5, 3)
7/20



Plan of the talk

1. Model: BST-like trees and absorbing patterns

2. Main Theorem and outline of the proof

3. Conclusions
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Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.
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Expression trees and BST-like model

Unary-binary trees:

leaves (constants), unary, and binary operators.
BST-like procedure. Consider probabilities over leaves Ay and
operators Aqps, Write (p,).4, and (pop)AOPs.

o If n >3 : draw an operator according to (Pop)opeca

ops "
— Case binary operator: pick k € {1,...,n — 2} uniformly.
op

return -t~
BST(k) BST(n — k — 1)

— Case unary operator :
op

return -
BST(n—1)
e If n=1": return a leaf a according to (pa)ac.A,-

o If n=2: pick op. of arity 1...
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Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
Consider a family of unary-binary tree expressions, consider
» an “operation” ® with arity a = 2,

> a fixed expression tree P.

10/20



Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
Consider a family of unary-binary tree expressions, consider
» an “operation” ® with arity a = 2,

> a fixed expression tree P.

We simplify by applying bottom-up the rule:

®
/ \ ~ P, whenever C; = P for some i € {1,2}.
Ci Oy

10/20



Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
Consider a family of unary-binary tree expressions, consider
» an “operation” ® with arity a = 2,

> a fixed expression tree P.

We simplify by applying bottom-up the rule:

®
/ \ ~ P, whenever C; = P for some i € {1,2}.
Ci Oy

= We are interested in the size (number of nodes)
of the trees after simplification.

10/20



Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
Consider a family of unary-binary tree expressions, consider
» an “operation” ® with arity a = 2,

> a fixed expression tree P.

We simplify by applying bottom-up the rule:

®
/ \ ~ P, whenever C; = P for some i € {1,2}.
Ci Oy

= We are interested in the size (number of nodes)
of the trees after simplification.

Denote by o(T") the simplification of 7.
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Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ® of arity 2.

Take the simplification consisting in inductively changing a ®-node
by P whenever one of its children simplifies to P.
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Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ® of arity 2.

Take the simplification consisting in inductively changing a ®-node
by P whenever one of its children simplifies to P.

Then the of the simplification of a random BST-like
tree has an asymptotic behaviour given by the following cases,
depending on the probability pg of the absorbing operator:

@(W) O(logn)
o(n) om) . em
significant ﬂ degenerate 1 N

reduction  * case

—_

0 almost no reduction

o= 4+

» Probability pg of ®, and p of picking unary operator.

» Regimes from no reduction ©(n) to complete reduction ©(1)
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The main regimes experimentally
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The main regimes experimentally
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Experimental plots (10 000 samples) for regular expressions on two
letters a,b: P = (a + b)* absorbing for union ® = +
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Figure: Linear (p; = p, = p. = 1), sublinear (p; = 32, p. =p. = )
and constant (py = 5, p. =p. = )

12/20



Scheme for the proof
We employ Analytic Combinatorics to study the expectation,

» Ordinary generating function

o0
E(z) := Z enz’,
n=0

encodes sequence e, := E,[|o(T)]].
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We employ Analytic Combinatorics to study the expectation,

» Ordinary generating function

o0
E(z) := Z enz’,
n=0

encodes sequence e, := E,[|o(T)]].
» Symbolic Step. We find a formal equation describing E(z).

Here this will be an ordinary differential equation
E'(2)=B(2)+C(2)- E(2).

» Analytic Step. We look at E(z) over the complex z € C.

A Transfer Theorem links the behaviour of E(z) at its
dominant singularity to asymptotics of e, = Study singularities

E(2) ~am1 M1 — 2) % = e, ~ An® 71 T(a)

13/20



Symbolic step

We consider a fundamental sequence
Tn = P;I‘ {U(T) = P} )

of the probabilities of full reduction.
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Symbolic step

We consider a fundamental sequence
Vn 1= lilr {o(T) =P},

of the probabilities of full reduction.

First order differential equation for the generating function
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Symbolic step

We consider a fundamental sequence
Tn = 1:;1' {U(T) = P} )

of the probabilities of full reduction.

First order differential equation for the generating function

E'(2) = F(z,A(2))+

s (2p2 (1 - ) 5200 A(2) ) - E(2),

where A(z) =) 2"

Proof. Recurrence for e, involving ~,,

Ent+1 = 1+(5 - 1)"Yn+11n+17£s +p|en
n—1 n—1
2pu

N e+ 2p®z )1 =),

Jj=1

+

here py := 1 — p — pg and s = |P|.
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Analytic step: the singularity z =1

Symbolic step gives differential equation:
> First order differential equations can be solved explicitly,

» But coefficients depend on unknown generating function A(z).
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Analytic step: the singularity z =1

Symbolic step gives differential equation:
> First order differential equations can be solved explicitly,

» But coefficients depend on unknown generating function A(z).

To apply the Transfer Theorem and complete the proof:
» we show that A(z) and E(z) are analytic over = C\ [1, 00),

> we require precise asymptotics for A(z) at z = 1.

Solution of ODE gives asymptotics

Cc

E(z) ~ m (2 + /OZ F(w,A(w))I(w)dw) (I(z)"', z—1,

w)

where I(z) := exp (2p® I 1A_(p| dw).
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Fully reducible trees: probabilities

We study the generating function A(z) = > v,2"

Proposition

Generating function satisfies Riccati differential equation

) = (5= 2+ (2 2me ) AG) - (40)?

1—2z

where s = |P|.
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Fully reducible trees: probabilities

We study the generating function A(z) = > v,2"

Proposition

Generating function satisfies Riccati differential equation

A = (5= 2+ (222 ) 4G = (40,

where s = |P|.

Proof.
The probabilities ~,, = Pr,, {o(T') = P} satisfy, for n > |P|,

n—1

p
Vnt1 = n—jpl ;(’m + Yn—k — W Vn—k) - O
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Analytic step: linearization of Riccati
Considering v(2) such that pg A(2) = v/(2)/v(2),
Riccati equation becomes linear

V" (2) = pe - (5 — 2)7s2° Tu(2) + <z + 2pe 1 i z> v'(2).
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Analytic step: linearization of Riccati
Considering v(2) such that pg A(2) = v/(2)/v(2),
Riccati equation becomes linear

V" (2) = pe - (5 — 2)7s2° Tu(2) + <z + 2pe 1 & z> v'(2).

For linear ODEs:

» domain of analyticity well-understood.

P Frobenius method characterizes behaviour at singularities.
Proposition
The generating function A(z) satisfies, z — 1

> For pg > % Az) = = +0((1 - z)?Pe=2),

> Forpe = 3, A() = 1 (log (1)) (140 (106 (%) )

> For pg < 3, A(z) ~ (1_2%,

where Yoo 1= (2pg — 1)/pe and D > 0 is a constant.
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Probability of full reduction

Theorem

The probability v, of being fully reducible tends to the constant
Voo = (2pe — 1)/pe for pe > % and to zero for pg < %
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Probability of full reduction

Theorem

The probability v, of being fully reducible tends to the constant
Voo = (2pe — 1)/pe for pe > % and to zero for ps < 5

Experimental plot:
regular expressions on
two letters with

(P4, Pe,04) = (5> 15> 15) -

Then

nli_}rrgofyn =3/4.
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Conclusions and further work
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Conclusions and further work

Conclusions

® BST-like expression trees present a richer range of behaviours
than the uniform ones.

® Not exempt of degenerate cases however
= tuning probabilities might be important.

Questions and further work

1. Absorbing operator ® of arity a > 3 7
= expect similar results, threshold é instead of %

2. Absorbing pattern model is
= consider interactions between operators?

3. Take a concrete case: LTL formulas.
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Thank you!
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