Absorbing patterns in BST-like expression-trees

Pablo Rotondo
LIGM, Université Gustave Eiffel

Joint work with
Florent Koechlin

STACS 2021,
Online, March, 2021.

Introduction

- Expression trees

$(b \cdot(a+\varepsilon))^{\star}$

$$
\mathbf{X}(\neg p) \rightarrow \square(q \mathbf{U} r)
$$

Introduction

- Expression trees

- Automated testing, benchmark testing
- Correctness and performance of algorithms

Introduction

- Expression trees

- Automated testing, benchmark testing
- Correctness and performance of algorithms
- Randomly generated input
- Realistic distribution
- Simple implementation, possibility of theoretical analysis.

BST-like trees

Target: produce random tree with given number of nodes n.

BST-like trees

Target: produce random tree with given number of nodes n.

```
function RandomFormula(n):
if n=1 then
    p:= random symbol in AP\cup{\top, \perp};
    return p;
else if }n=2\mathrm{ then
    op:= random unary operator in {\neg,\mathbf{X},\square,\diamond};
    f:= RandomFormula(1);
    return op f;
else
    op := random operator in {},\neg,\mathbf{X},\square,\diamond,\wedge,\vee,->,\leftrightarrow,\mathbf{U},\mathbf{R}}
    if op in {\neg, X, \square, \diamond} then
        f:= RandomFormula(n-1);
        return op f;
    else
        x:= uniform integer in [1,n-2];
        f
        f}2:=\mathrm{ RandomFormula(n-x-1);
        return (f1 op f ();
```

Figure: Code used in tool lbtt (from TCS) to draw an LTL formula.

BST-like trees: distribution over unary-binary trees

BST-like tree distribution is not uniform.

BST-like trees: distribution over unary-binary trees

BST-like tree distribution is not uniform.

- Binary nodes \approx balanced $\frac{n}{2}-\frac{n}{2}$. not for uniform trees

$$
\mathbb{E}_{n}\left[\min \left(\left|T_{L}\right|,\left|T_{R}\right|\right)\right] \sim c_{0} \sqrt{n}
$$

- Expected height of different order

$$
\Theta(\log n) \text { vs } \Theta(\sqrt{n})
$$

Uniform and BST-like distributions

The uniform distribution:

- naturally maximizes entropy.
- can be sampled efficiently
(Boltzmann,Recursive,Devroye's constrainted GW).
- is amenable to theoretical study (Analytic Combinatorics).

Uniform and BST-like distributions

The uniform distribution:

- naturally maximizes entropy.
- can be sampled efficiently (Boltzmann,Recursive,Devroye's constrainted GW).
- is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:

- must be parametrized (prob. of operators).
- is easy to implement and very efficient.
- is often used in the automated checking of tools.

Uniform and BST-like distributions

The uniform distribution:

- naturally maximizes entropy.
- can be sampled efficiently (Boltzmann,Recursive,Devroye's constrainted GW).
- is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:

- must be parametrized (prob. of operators).
- is easy to implement and very efficient.
- is often used in the automated checking of tools.

Let us see what happens with uniform expressions first...

Semantic simplification

Universal result for uniform tree model:
Theorem (Koechlin,Nicaud, R,'20)
Expected size of reduction of uniform tree bounded, as size $\rightarrow \infty$.

Semantic simplification

Universal result for uniform tree model:
Theorem (Koechlin,Nicaud, R,'20)
Expected size of reduction of uniform tree bounded, as size $\rightarrow \infty$.

- Reduction based on absorbing pattern \mathcal{P},

Semantic simplification

Universal result for uniform tree model:
Theorem (Koechlin,Nicaud,R,'20)
Expected size of reduction of uniform tree bounded, as size $\rightarrow \infty$.

- Reduction based on absorbing pattern \mathcal{P},
- Wide variety of examples:

Semantic simplification

Universal result for uniform tree model:
Theorem (Koechlin,Nicaud,R,'20)
Expected size of reduction of uniform tree bounded, as size $\rightarrow \infty$.

- Reduction based on absorbing pattern \mathcal{P},

$$
\stackrel{\otimes}{\mathcal{P}^{\wedge}{ }_{T}} \rightsquigarrow \mathcal{P} \quad \stackrel{\otimes}{{ }_{T} \backslash \mathcal{P}} \rightsquigarrow \mathcal{P}
$$

- Wide variety of examples:

$$
x \mapsto 0
$$

operator $+\quad$ operator \times

- For regular expressions on two letters, constant bound ≈ 77.8.

In our work we

- draw an random BST-like tree expression of size n.
- study expected size of reduced expressions as $n \rightarrow \infty$.
- answer the question: do BST-like distributions present the same flaw as the uniform one?

In our work we

- draw an random BST-like tree expression of size n.
- study expected size of reduced expressions as $n \rightarrow \infty$.
- answer the question: do BST-like distributions present the same flaw as the uniform one? \Rightarrow we characterize 5 regimes

In our work we

- draw an random BST-like tree expression of size n.
- study expected size of reduced expressions as $n \rightarrow \infty$.
- answer the question: do BST-like distributions present the same flaw as the uniform one? \Rightarrow we characterize 5 regimes

Experimental expected size (10 000 samples) ${ }^{1}$ on regular expressions $(+, \bullet, \star)$ on two letters a, b :

$$
\mathcal{P}=(a+b)^{\star} \text { absorbing for union } \circledast=+
$$

${ }^{1}$ Left to right $\left(p_{\star}, p_{\bullet}, p_{+}\right):\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),\left(\frac{5}{29}, \frac{5}{29}, \frac{19}{29}\right)$, and $\left(\frac{1}{10}, \frac{1}{10}, \frac{8}{10}\right)$

Plan of the talk

1. Model: BST-like trees and absorbing patterns
2. Main Theorem and outline of the proof
3. Conclusions

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.
BST-like procedure. Consider probabilities over leaves \mathcal{A}_{0} and operators $\mathcal{A}_{\mathrm{ops}}$, write $\left(p_{a}\right)_{\mathcal{A}_{0}}$ and $\left(p_{o p}\right)_{\mathcal{A}_{\mathrm{ops}}}$.

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.
BST-like procedure. Consider probabilities over leaves \mathcal{A}_{0} and operators $\mathcal{A}_{\text {ops }}$, write $\left(p_{a}\right)_{\mathcal{A}_{0}}$ and $\left(p_{o p}\right)_{\mathcal{A}_{\mathrm{ops}}}$.

- If $n \geq 3$: draw an operator according to $\left(p_{o p}\right)_{o p \in \mathcal{A}_{\text {ops }}}$.

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.
BST-like procedure. Consider probabilities over leaves \mathcal{A}_{0} and operators $\mathcal{A}_{\mathrm{ops}}$, write $\left(p_{a}\right)_{\mathcal{A}_{0}}$ and $\left(p_{o p}\right)_{\mathcal{A}_{\mathrm{ops}}}$.

- If $n \geq 3$: draw an operator according to $\left(p_{o p}\right)_{o p \in \mathcal{A}_{\text {ops }}}$.
- Case binary operator: pick $k \in\{1, \ldots, n-2\}$ uniformly. return $\underset{\operatorname{BST}(k)-o p r}{\operatorname{BST}(n-k-1)}$

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.
BST-like procedure. Consider probabilities over leaves \mathcal{A}_{0} and operators $\mathcal{A}_{\text {ops }}$, write $\left(p_{a}\right)_{\mathcal{A}_{0}}$ and $\left(p_{o p}\right)_{\mathcal{A}_{\mathrm{ops}}}$.

- If $n \geq 3$: draw an operator according to $\left(p_{o p}\right)_{o p \in \mathcal{A}_{\text {ops }}}$.
- Case binary operator: pick $k \in\{1, \ldots, n-2\}$ uniformly. return $\underset{\operatorname{BST}(k)-o p}{\operatorname{BST}(n-k-1)}$
- Case unary operator:

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.
BST-like procedure. Consider probabilities over leaves \mathcal{A}_{0} and operators $\mathcal{A}_{\mathrm{ops}}$, write $\left(p_{a}\right)_{\mathcal{A}_{0}}$ and $\left(p_{o p}\right)_{\mathcal{A}_{\mathrm{ops}}}$.

- If $n \geq 3$: draw an operator according to $\left(p_{o p}\right)_{o p \in \mathcal{A}_{\text {ops }}}$.
- Case binary operator: pick $k \in\{1, \ldots, n-2\}$ uniformly. return $\underset{\operatorname{BST}(k)-o p}{\operatorname{BST}(n-k-1)}$
- Case unary operator:

- If $n=1$: return a leaf a according to $\left(p_{a}\right)_{a \in \mathcal{A}_{0}}$.

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.
BST-like procedure. Consider probabilities over leaves \mathcal{A}_{0} and operators $\mathcal{A}_{\mathrm{ops}}$, write $\left(p_{a}\right)_{\mathcal{A}_{0}}$ and $\left(p_{o p}\right)_{\mathcal{A}_{\mathrm{ops}}}$.

- If $n \geq 3$: draw an operator according to $\left(p_{o p}\right)_{o p \in \mathcal{A}_{\text {ops }}}$.
- Case binary operator: pick $k \in\{1, \ldots, n-2\}$ uniformly. return $\underset{\operatorname{BST}(k)-o p}{\operatorname{BST}(n-k-1)}$
- Case unary operator:

- If $n=1$: return a leaf a according to $\left(p_{a}\right)_{a \in \mathcal{A}_{0}}$.
- If $n=2$: pick op. of arity $1 \ldots$

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
Consider a family of unary-binary tree expressions, consider

- an "operation" \circledast with arity $a=2$,
- a fixed expression tree \mathcal{P}.

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
Consider a family of unary-binary tree expressions, consider

- an "operation" \circledast with arity $a=2$,
- a fixed expression tree \mathcal{P}.

We simplify by applying bottom-up the rule:

$$
C_{C_{1}}^{\circledast} \backslash_{C_{2}}^{*} \rightsquigarrow \mathcal{P} \text {, whenever } C_{i}=\mathcal{P} \text { for some } i \in\{1,2\} .
$$

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
Consider a family of unary-binary tree expressions, consider

- an "operation" \circledast with arity $a=2$,
- a fixed expression tree \mathcal{P}.

We simplify by applying bottom-up the rule:

```
    *
    \(/ \backslash \rightsquigarrow \mathcal{P}\), whenever \(C_{i}=\mathcal{P}\) for some \(i \in\{1,2\}\).
\(C_{1} \quad C_{2}\)
```

\Rightarrow We are interested in the size (number of nodes) of the trees after simplification.

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
Consider a family of unary-binary tree expressions, consider

- an "operation" \circledast with arity $a=2$,
- a fixed expression tree \mathcal{P}.

We simplify by applying bottom-up the rule:

```
    \({ }^{*}\)
    \(/ \backslash \rightsquigarrow \mathcal{P}\), whenever \(C_{i}=\mathcal{P}\) for some \(i \in\{1,2\}\).
    \(C_{1} \quad C_{2}\)
```

\Rightarrow We are interested in the size (number of nodes) of the trees after simplification.

Denote by $\sigma(T)$ the simplification of T.

Theorem. Consider a family of expression trees defined from unary and binary operators with an absorbing pattern \mathcal{P} for an operator \circledast of arity 2 .

Take the simplification consisting in inductively changing a \circledast-node by \mathcal{P} whenever one of its children simplifies to \mathcal{P}.

Theorem. Consider a family of expression trees defined from unary and binary operators with an absorbing pattern \mathcal{P} for an operator \circledast of arity 2 .

Take the simplification consisting in inductively changing a \circledast-node by \mathcal{P} whenever one of its children simplifies to \mathcal{P}.

Then the expected size of the simplification of a random BST-like tree has an asymptotic behaviour given by the following cases, depending on the probability p_{\circledast} of the absorbing operator:

Theorem. Consider a family of expression trees defined from unary and binary operators with an absorbing pattern \mathcal{P} for an operator \circledast of arity 2 .

Take the simplification consisting in inductively changing a \circledast-node by \mathcal{P} whenever one of its children simplifies to \mathcal{P}.

Then the expected size of the simplification of a random BST-like tree has an asymptotic behaviour given by the following cases, depending on the probability p_{\circledast} of the absorbing operator:

- Probability p_{\circledast} of \circledast, and $p_{\text {I }}$ of picking unary operator.
- Regimes from no reduction $\Theta(n)$ to complete reduction $\Theta(1)$

The main regimes experimentally

The main regimes experimentally

Experimental plots (10 000 samples) for regular expressions on two letters $a, b: \mathcal{P}=(a+b)^{\star}$ absorbing for union $\circledast=+$

Figure: Linear $\left(p_{+}=p_{\star}=p .=\frac{1}{3}\right)$, sublinear $\left(p_{+}=\frac{19}{29}, p_{\star}=p .=\frac{5}{29}\right)$ and constant $\left(p_{+}=\frac{8}{10}, p_{\star}=p .=\frac{1}{10}\right)$.

Scheme for the proof

We employ Analytic Combinatorics to study the expectation,

- Ordinary generating function

$$
E(z):=\sum_{n=0}^{\infty} e_{n} z^{n}
$$

encodes sequence $e_{n}:=\mathbb{E}_{n}[|\sigma(T)|]$.

Scheme for the proof

We employ Analytic Combinatorics to study the expectation,

- Ordinary generating function

$$
E(z):=\sum_{n=0}^{\infty} e_{n} z^{n}
$$

encodes sequence $e_{n}:=\mathbb{E}_{n}[|\sigma(T)|]$.

- Symbolic Step. We find a formal equation describing $E(z)$.

Here this will be an ordinary differential equation

$$
E^{\prime}(z)=B(z)+C(z) \cdot E(z) .
$$

Scheme for the proof

We employ Analytic Combinatorics to study the expectation,

- Ordinary generating function

$$
E(z):=\sum_{n=0}^{\infty} e_{n} z^{n}
$$

encodes sequence $e_{n}:=\mathbb{E}_{n}[|\sigma(T)|]$.

- Symbolic Step. We find a formal equation describing $E(z)$.

Here this will be an ordinary differential equation

$$
E^{\prime}(z)=B(z)+C(z) \cdot E(z)
$$

- Analytic Step. We look at $E(z)$ over the complex $z \in \mathbb{C}$.

A Transfer Theorem links the behaviour of $E(z)$ at its dominant singularity to asymptotics of $e_{n} \Rightarrow$ Study singularities

$$
E(z) \sim_{z \rightarrow 1} \lambda(1-z)^{-\alpha} \Longrightarrow e_{n} \sim \lambda n^{\alpha-1} / \Gamma(\alpha)
$$

Symbolic step

We consider a fundamental sequence

$$
\gamma_{n}:=\operatorname{Pr}_{n}\{\sigma(T)=\mathcal{P}\}
$$

of the probabilities of full reduction.

Symbolic step

We consider a fundamental sequence

$$
\gamma_{n}:=\operatorname{Pr}_{n}\{\sigma(T)=\mathcal{P}\}
$$

of the probabilities of full reduction.
First order differential equation for the generating function
$E^{\prime}(z)=F(z, A(z))+\frac{1}{1-p_{1} z}\left(\frac{2}{z}-p_{\mathrm{\jmath}}+2\left(1-p_{\mathrm{\prime}}\right) \frac{z}{1-z}-2 p_{\circledast} A(z)\right) \cdot E(z)$,
where $A(z)=\sum_{n} \gamma_{n} z^{n}$.

Symbolic step

We consider a fundamental sequence

$$
\gamma_{n}:=\operatorname{Pr}_{n}\{\sigma(T)=\mathcal{P}\},
$$

of the probabilities of full reduction.
First order differential equation for the generating function
$E^{\prime}(z)=F(z, A(z))+\frac{1}{1-p_{\mathrm{\prime}} z}\left(\frac{2}{z}-p_{\mathrm{\jmath}}+2\left(1-p_{\mathrm{\prime}}\right) \frac{z}{1-z}-2 p_{\circledast} A(z)\right) \cdot E(z)$,
where $A(z)=\sum_{n} \gamma_{n} z^{n}$.
Proof. Recurrence for e_{n} involving γ_{n},

$$
\begin{aligned}
e_{n+1}=1+ & (s-1) \gamma_{n+1} \mathbf{1}_{n+1 \neq s}+p_{\mathrm{\prime}} e_{n} \\
& +\frac{2 p_{\text {II }}}{n-1} \sum_{j=1}^{n-1} e_{j}+\frac{2 p_{\circledast}}{n-1} \sum_{j=1}^{n-1}\left(e_{j}-s \gamma_{j}\right)\left(1-\gamma_{n-j}\right),
\end{aligned}
$$

here $p_{\text {II }}:=1-p_{\mathrm{I}}-p_{\circledast}$ and $s=|\mathcal{P}|$.

Analytic step: the singularity $z=1$

Symbolic step gives differential equation:

- First order differential equations can be solved explicitly,
- But coefficients depend on unknown generating function $A(z)$.

Analytic step: the singularity $z=1$

Symbolic step gives differential equation:

- First order differential equations can be solved explicitly,
- But coefficients depend on unknown generating function $A(z)$.

To apply the Transfer Theorem and complete the proof:

- we show that $A(z)$ and $E(z)$ are analytic over $\Omega=\mathbb{C} \backslash[1, \infty)$,
- we require precise asymptotics for $A(z)$ at $z=1$.

Analytic step: the singularity $z=1$

Symbolic step gives differential equation:

- First order differential equations can be solved explicitly,
- But coefficients depend on unknown generating function $A(z)$.

To apply the Transfer Theorem and complete the proof:

- we show that $A(z)$ and $E(z)$ are analytic over $\Omega=\mathbb{C} \backslash[1, \infty)$,
- we require precise asymptotics for $A(z)$ at $z=1$.

Solution of ODE gives asymptotics

$$
E(z) \sim \frac{c}{(1-z)^{2}}\left(2+\int_{0}^{z} F(w, A(w)) I(w) d w\right)(I(z))^{-1}, \quad z \rightarrow 1
$$

where $I(z):=\exp \left(2 p_{\circledast} \int_{0}^{z} \frac{A(w)}{1-p_{\mid} w} d w\right)$.

Fully reducible trees: probabilities

We study the generating function $A(z)=\sum \gamma_{n} z^{n}$
Proposition
Generating function satisfies Riccati differential equation

$$
A^{\prime}(z)=(s-2) \gamma_{s} z^{s-1}+\left(\frac{2}{z}+2 p_{\circledast} \frac{z}{1-z}\right) A(z)-p_{\circledast} \cdot(A(z))^{2}
$$

where $s=|\mathcal{P}|$.

Fully reducible trees: probabilities

We study the generating function $A(z)=\sum \gamma_{n} z^{n}$

Proposition

Generating function satisfies Riccati differential equation

$$
A^{\prime}(z)=(s-2) \gamma_{s} z^{s-1}+\left(\frac{2}{z}+2 p_{\circledast} \frac{z}{1-z}\right) A(z)-p_{\circledast} \cdot(A(z))^{2}
$$

where $s=|\mathcal{P}|$.

Proof.

The probabilities $\gamma_{n}=\operatorname{Pr}_{n}\{\sigma(T)=\mathcal{P}\}$ satisfy, for $n \geq|\mathcal{P}|$,

$$
\gamma_{n+1}=\frac{p_{\circledast}}{n-1} \sum_{k=1}^{n-1}\left(\gamma_{k}+\gamma_{n-k}-\gamma_{k} \gamma_{n-k}\right) .
$$

Analytic step: linearization of Riccati

Considering $v(z)$ such that $p_{\circledast} A(z)=v^{\prime}(z) / v(z)$,
Riccati equation becomes linear

$$
v^{\prime \prime}(z)=p_{\circledast} \cdot(s-2) \gamma_{s} z^{s-1} v(z)+\left(\frac{2}{z}+2 p_{\circledast} \frac{z}{1-z}\right) v^{\prime}(z) .
$$

Analytic step: linearization of Riccati

Considering $v(z)$ such that $p_{\circledast} A(z)=v^{\prime}(z) / v(z)$,
Riccati equation becomes linear

$$
v^{\prime \prime}(z)=p_{\circledast} \cdot(s-2) \gamma_{s} z^{s-1} v(z)+\left(\frac{2}{z}+2 p_{\circledast} \frac{z}{1-z}\right) v^{\prime}(z) .
$$

For linear ODEs:

- domain of analyticity well-understood.
- Frobenius method characterizes behaviour at singularities.

Analytic step: linearization of Riccati

Considering $v(z)$ such that $p_{\circledast} A(z)=v^{\prime}(z) / v(z)$,
Riccati equation becomes linear

$$
v^{\prime \prime}(z)=p_{\circledast} \cdot(s-2) \gamma_{s} z^{s-1} v(z)+\left(\frac{2}{z}+2 p_{\circledast} \frac{z}{1-z}\right) v^{\prime}(z) .
$$

For linear ODEs:

- domain of analyticity well-understood.
- Frobenius method characterizes behaviour at singularities.

Proposition

The generating function $A(z)$ satisfies, $z \rightarrow 1$

- For $p_{\circledast}>\frac{1}{2}, A(z)=\frac{\gamma_{\infty}}{1-z}+O\left((1-z)^{2 p_{\circledast}-2}\right)$,
- For $p_{\circledast}=\frac{1}{2}, A(z)=\frac{2}{1-z}\left(\log \left(\frac{1}{1-z}\right)\right)^{-1}\left(1+O\left(\log \left(\frac{1}{1-z}\right)^{-1}\right)\right)$
- For $p_{\circledast}<\frac{1}{2}, A(z) \sim \frac{D}{(1-z)^{2 p_{\circledast}}}$,
where $\gamma_{\infty}:=\left(2 p_{\circledast}-1\right) / p_{\circledast}$ and $D>0$ is a constant.

Probability of full reduction

Theorem

The probability γ_{n} of being fully reducible tends to the constant $\gamma_{\infty}:=\left(2 p_{\circledast}-1\right) / p_{\circledast}$ for $p_{\circledast}>\frac{1}{2}$, and to zero for $p_{\circledast} \leq \frac{1}{2}$.

Probability of full reduction

Theorem

The probability γ_{n} of being fully reducible tends to the constant $\gamma_{\infty}:=\left(2 p_{\circledast}-1\right) / p_{\circledast}$ for $p_{\circledast}>\frac{1}{2}$, and to zero for $p_{\circledast} \leq \frac{1}{2}$.

Experimental plot: regular expressions on two letters with $\left(p_{+}, p_{\bullet}, p_{\star}\right)=\left(\frac{8}{10}, \frac{1}{10}, \frac{1}{10}\right)$.

Then

$$
\lim _{n \rightarrow \infty} \gamma_{n}=3 / 4
$$

Conclusions and further work

Conclusions

* BST-like expression trees present a richer range of behaviours than the uniform ones.

Conclusions and further work

Conclusions
\circledast BST-like expression trees present a richer range of behaviours than the uniform ones.
\circledast Not exempt of degenerate cases however
\Rightarrow tuning probabilities might be important.

Conclusions and further work

Conclusions
\circledast BST-like expression trees present a richer range of behaviours than the uniform ones.
\circledast Not exempt of degenerate cases however
\Rightarrow tuning probabilities might be important.

Conclusions and further work

Conclusions
\circledast BST-like expression trees present a richer range of behaviours than the uniform ones.
\circledast Not exempt of degenerate cases however
\Rightarrow tuning probabilities might be important.

Questions and further work

1. Absorbing operator \circledast of arity $a \geq 3$?

Conclusions and further work

Conclusions
\circledast BST-like expression trees present a richer range of behaviours than the uniform ones.
\circledast Not exempt of degenerate cases however
\Rightarrow tuning probabilities might be important.

Questions and further work

1. Absorbing operator \circledast of arity $a \geq 3$?
\Rightarrow expect similar results, threshold $\frac{1}{a}$ instead of $\frac{1}{2}$.

Conclusions and further work

Conclusions
\circledast BST-like expression trees present a richer range of behaviours than the uniform ones.
\circledast Not exempt of degenerate cases however
\Rightarrow tuning probabilities might be important.

Questions and further work

1. Absorbing operator \circledast of arity $a \geq 3$?
\Rightarrow expect similar results, threshold $\frac{1}{a}$ instead of $\frac{1}{2}$.
2. Absorbing pattern model is general
\Rightarrow consider interactions between operators?

Conclusions and further work

Conclusions
\circledast BST-like expression trees present a richer range of behaviours than the uniform ones.
\circledast Not exempt of degenerate cases however
\Rightarrow tuning probabilities might be important.

Questions and further work

1. Absorbing operator \circledast of arity $a \geq 3$?
\Rightarrow expect similar results, threshold $\frac{1}{a}$ instead of $\frac{1}{2}$.
2. Absorbing pattern model is general
\Rightarrow consider interactions between operators?
3. Take a concrete case: LTL formulas.

Thank you!

