
Absorbing patterns in BST-like expression-trees

Pablo Rotondo
LIGM, Université Gustave Eiffel

Joint work with

Florent Koechlin

STACS 2021,
Online, March, 2021.

1 / 20

Introduction

I Expression trees
∧

∨ ¬
x3x1 ¬

x2

(x1 ∨ ¬x2) ∧ ¬x3

?

•

b +

a ε

(b · (a+ ε))?

→

�X

U¬
rqp

X(¬p)→ �(qUr)

I Automated testing, benchmark testing

• Correctness and performance of algorithms

I Randomly generated input

• Realistic distribution

• Simple implementation, possibility of theoretical analysis.

2 / 20

Introduction

I Expression trees
∧

∨ ¬
x3x1 ¬

x2

(x1 ∨ ¬x2) ∧ ¬x3

?

•

b +

a ε

(b · (a+ ε))?

→

�X

U¬
rqp

X(¬p)→ �(qUr)

I Automated testing, benchmark testing

• Correctness and performance of algorithms

I Randomly generated input

• Realistic distribution

• Simple implementation, possibility of theoretical analysis.

2 / 20

Introduction

I Expression trees
∧

∨ ¬
x3x1 ¬

x2

(x1 ∨ ¬x2) ∧ ¬x3

?

•

b +

a ε

(b · (a+ ε))?

→

�X

U¬
rqp

X(¬p)→ �(qUr)

I Automated testing, benchmark testing

• Correctness and performance of algorithms

I Randomly generated input

• Realistic distribution

• Simple implementation, possibility of theoretical analysis.

2 / 20

BST-like trees
Target: produce random tree with given number of nodes n.

function RandomFormula(n):
if n = 1 then

p := random symbol in AP ∪ {>,⊥};
return p;

else if n = 2 then
op := random unary operator in {¬,X,�,♦};
f := RandomFormula(1);
return op f ;

else
op := random operator in {¬,X,�,♦,∧,∨,→,↔,U,R};
if op in {¬,X,�,♦} then

f := RandomFormula(n− 1);
return op f ;

else
x := uniform integer in [1, n− 2];
f1 := RandomFormula(x);
f2 := RandomFormula(n− x− 1);
return (f1 op f2);

Figure: Code used in tool lbtt (from TCS) to draw an LTL formula.

3 / 20

BST-like trees
Target: produce random tree with given number of nodes n.

function RandomFormula(n):
if n = 1 then

p := random symbol in AP ∪ {>,⊥};
return p;

else if n = 2 then
op := random unary operator in {¬,X,�,♦};
f := RandomFormula(1);
return op f ;

else
op := random operator in {¬,X,�,♦,∧,∨,→,↔,U,R};
if op in {¬,X,�,♦} then

f := RandomFormula(n− 1);
return op f ;

else
x := uniform integer in [1, n− 2];
f1 := RandomFormula(x);
f2 := RandomFormula(n− x− 1);
return (f1 op f2);

Figure: Code used in tool lbtt (from TCS) to draw an LTL formula.

3 / 20

BST-like trees: distribution over unary-binary trees

BST-like tree distribution is not uniform.

I Binary nodes ≈ balanced n
2 –n2 .

not for uniform trees

En[min(|TL|, |TR|)] ∼ c0
√
n .

I Expected height of different order

Θ(log n) vs Θ(
√
n) .

4 / 20

BST-like trees: distribution over unary-binary trees

BST-like tree distribution is not uniform.

I Binary nodes ≈ balanced n
2 –n2 .

not for uniform trees

En[min(|TL|, |TR|)] ∼ c0
√
n .

I Expected height of different order

Θ(log n) vs Θ(
√
n) .

4 / 20

Uniform and BST-like distributions

The uniform distribution:

I naturally maximizes entropy.

I can be sampled efficiently
(Boltzmann,Recursive,Devroye’s constrainted GW).

I is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:

I must be parametrized (prob. of operators).

I is easy to implement and very efficient.

I is often used in the automated checking of tools.

Let us see what happens with uniform expressions first...

5 / 20

Uniform and BST-like distributions

The uniform distribution:

I naturally maximizes entropy.

I can be sampled efficiently
(Boltzmann,Recursive,Devroye’s constrainted GW).

I is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:

I must be parametrized (prob. of operators).

I is easy to implement and very efficient.

I is often used in the automated checking of tools.

Let us see what happens with uniform expressions first...

5 / 20

Uniform and BST-like distributions

The uniform distribution:

I naturally maximizes entropy.

I can be sampled efficiently
(Boltzmann,Recursive,Devroye’s constrainted GW).

I is amenable to theoretical study (Analytic Combinatorics).

The BST-like distribution:

I must be parametrized (prob. of operators).

I is easy to implement and very efficient.

I is often used in the automated checking of tools.

Let us see what happens with uniform expressions first...

5 / 20

Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,’20)

Expected size of reduction of uniform tree bounded, as size→∞.

I Reduction based on absorbing pattern P,

~
/ \
P T

 P
~
/ \
T P

 P

I Wide variety of examples:

∨
xi ¬xi

operator ∨

?

+
a b

operator +

x 7→ 0

operator ×

I For regular expressions on two letters, constant bound ≈ 77.8 .

6 / 20

Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,’20)

Expected size of reduction of uniform tree bounded, as size→∞.

I Reduction based on absorbing pattern P,

~
/ \
P T

 P
~
/ \
T P

 P

I Wide variety of examples:

∨
xi ¬xi

operator ∨

?

+
a b

operator +

x 7→ 0

operator ×

I For regular expressions on two letters, constant bound ≈ 77.8 .

6 / 20

Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,’20)

Expected size of reduction of uniform tree bounded, as size→∞.

I Reduction based on absorbing pattern P,

~
/ \
P T

 P
~
/ \
T P

 P

I Wide variety of examples:

∨
xi ¬xi

operator ∨

?

+
a b

operator +

x 7→ 0

operator ×

I For regular expressions on two letters, constant bound ≈ 77.8 .

6 / 20

Semantic simplification

Universal result for uniform tree model:

Theorem (Koechlin,Nicaud,R,’20)

Expected size of reduction of uniform tree bounded, as size→∞.

I Reduction based on absorbing pattern P,

~
/ \
P T

 P
~
/ \
T P

 P

I Wide variety of examples:

∨
xi ¬xi

operator ∨

?

+
a b

operator +

x 7→ 0

operator ×

I For regular expressions on two letters, constant bound ≈ 77.8 .

6 / 20

In our work we

I draw an random BST-like tree expression of size n.

I study expected size of reduced expressions as n→∞.

I answer the question: do BST-like distributions present the
same flaw as the uniform one?

⇒ we characterize 5 regimes

Experimental expected size (10 000 samples) on regular expressions
(+, •, ?) on two letters a, b:

P = (a+ b)? absorbing for union ~ = +

0 0.2 0.4 0.6 0.8 1 ·1070

0.2

0.4

0.6

0.8

1

·107

size of the regular expression

si
ze

of
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1080

2

4

6

·106

size of the regular expression

si
ze

of
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1090

2,000

4,000

6,000

8,000

size of the regular expression

si
ze

of
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

7 / 20

In our work we

I draw an random BST-like tree expression of size n.

I study expected size of reduced expressions as n→∞.

I answer the question: do BST-like distributions present the
same flaw as the uniform one? ⇒ we characterize 5 regimes

Experimental expected size (10 000 samples) on regular expressions
(+, •, ?) on two letters a, b:

P = (a+ b)? absorbing for union ~ = +

0 0.2 0.4 0.6 0.8 1 ·1070

0.2

0.4

0.6

0.8

1

·107

size of the regular expression

si
ze

of
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1080

2

4

6

·106

size of the regular expression

si
ze

of
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1090

2,000

4,000

6,000

8,000

size of the regular expression

si
ze

of
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

7 / 20

In our work we

I draw an random BST-like tree expression of size n.

I study expected size of reduced expressions as n→∞.

I answer the question: do BST-like distributions present the
same flaw as the uniform one? ⇒ we characterize 5 regimes

Experimental expected size (10 000 samples)1 on regular expressions
(+, •, ?) on two letters a, b:

P = (a+ b)? absorbing for union ~ = +

0 0.2 0.4 0.6 0.8 1 ·1070

0.2

0.4

0.6

0.8

1

·107

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1080

2

4

6

·106

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1090

2,000

4,000

6,000

8,000

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

1Left to right (p?, p•, p+) : (
1
3
, 1
3
, 1
3
), (5

29
, 5
29
, 19
29
), and (1

10
, 1
10
, 8
10
)

7 / 20

Plan of the talk

1. Model: BST-like trees and absorbing patterns

2. Main Theorem and outline of the proof

3. Conclusions

8 / 20

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.

BST-like procedure. Consider probabilities over leaves A0 and
operators Aops, write (pa)A0 and (pop)Aops .

• If n ≥ 3 : draw an operator according to (pop)op∈Aops
.

– Case binary operator: pick k ∈ {1, . . . , n− 2} uniformly.

return
op

BST(k) BST(n− k − 1)

– Case unary operator :

return
op
|

BST(n−1)
.

• If n = 1 : return a leaf a according to (pa)a∈A0
.

• If n = 2 : pick op. of arity 1...

9 / 20

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.

BST-like procedure. Consider probabilities over leaves A0 and
operators Aops, write (pa)A0 and (pop)Aops .

• If n ≥ 3 : draw an operator according to (pop)op∈Aops
.

– Case binary operator: pick k ∈ {1, . . . , n− 2} uniformly.

return
op

BST(k) BST(n− k − 1)

– Case unary operator :

return
op
|

BST(n−1)
.

• If n = 1 : return a leaf a according to (pa)a∈A0
.

• If n = 2 : pick op. of arity 1...

9 / 20

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.

BST-like procedure. Consider probabilities over leaves A0 and
operators Aops, write (pa)A0 and (pop)Aops .

• If n ≥ 3 : draw an operator according to (pop)op∈Aops
.

– Case binary operator: pick k ∈ {1, . . . , n− 2} uniformly.

return
op

BST(k) BST(n− k − 1)

– Case unary operator :

return
op
|

BST(n−1)
.

• If n = 1 : return a leaf a according to (pa)a∈A0
.

• If n = 2 : pick op. of arity 1...

9 / 20

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.

BST-like procedure. Consider probabilities over leaves A0 and
operators Aops, write (pa)A0 and (pop)Aops .

• If n ≥ 3 : draw an operator according to (pop)op∈Aops
.

– Case binary operator: pick k ∈ {1, . . . , n− 2} uniformly.

return
op

BST(k) BST(n− k − 1)

– Case unary operator :

return
op
|

BST(n−1)
.

• If n = 1 : return a leaf a according to (pa)a∈A0
.

• If n = 2 : pick op. of arity 1...

9 / 20

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.

BST-like procedure. Consider probabilities over leaves A0 and
operators Aops, write (pa)A0 and (pop)Aops .

• If n ≥ 3 : draw an operator according to (pop)op∈Aops
.

– Case binary operator: pick k ∈ {1, . . . , n− 2} uniformly.

return
op

BST(k) BST(n− k − 1)

– Case unary operator :

return
op
|

BST(n−1)
.

• If n = 1 : return a leaf a according to (pa)a∈A0
.

• If n = 2 : pick op. of arity 1...

9 / 20

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.

BST-like procedure. Consider probabilities over leaves A0 and
operators Aops, write (pa)A0 and (pop)Aops .

• If n ≥ 3 : draw an operator according to (pop)op∈Aops
.

– Case binary operator: pick k ∈ {1, . . . , n− 2} uniformly.

return
op

BST(k) BST(n− k − 1)

– Case unary operator :

return
op
|

BST(n−1)
.

• If n = 1 : return a leaf a according to (pa)a∈A0
.

• If n = 2 : pick op. of arity 1...

9 / 20

Expression trees and BST-like model

Unary-binary trees:
leaves (constants), unary, and binary operators.

BST-like procedure. Consider probabilities over leaves A0 and
operators Aops, write (pa)A0 and (pop)Aops .

• If n ≥ 3 : draw an operator according to (pop)op∈Aops
.

– Case binary operator: pick k ∈ {1, . . . , n− 2} uniformly.

return
op

BST(k) BST(n− k − 1)

– Case unary operator :

return
op
|

BST(n−1)
.

• If n = 1 : return a leaf a according to (pa)a∈A0
.

• If n = 2 : pick op. of arity 1...

9 / 20

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Consider a family of unary-binary tree expressions, consider

I an “operation” ~ with arity a = 2,

I a fixed expression tree P.

We simplify by applying bottom-up the rule:
~

C1 C2

 P , whenever Ci = P for some i ∈ {1, 2}.

⇒ We are interested in the size (number of nodes)
of the trees after simplification.

Denote by σ(T) the simplification of T .

10 / 20

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Consider a family of unary-binary tree expressions, consider

I an “operation” ~ with arity a = 2,

I a fixed expression tree P.

We simplify by applying bottom-up the rule:
~

C1 C2

 P , whenever Ci = P for some i ∈ {1, 2}.

⇒ We are interested in the size (number of nodes)
of the trees after simplification.

Denote by σ(T) the simplification of T .

10 / 20

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Consider a family of unary-binary tree expressions, consider

I an “operation” ~ with arity a = 2,

I a fixed expression tree P.

We simplify by applying bottom-up the rule:
~

C1 C2

 P , whenever Ci = P for some i ∈ {1, 2}.

⇒ We are interested in the size (number of nodes)
of the trees after simplification.

Denote by σ(T) the simplification of T .

10 / 20

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Consider a family of unary-binary tree expressions, consider

I an “operation” ~ with arity a = 2,

I a fixed expression tree P.

We simplify by applying bottom-up the rule:
~

C1 C2

 P , whenever Ci = P for some i ∈ {1, 2}.

⇒ We are interested in the size (number of nodes)
of the trees after simplification.

Denote by σ(T) the simplification of T .

10 / 20

Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ~ of arity 2.

Take the simplification consisting in inductively changing a ~-node
by P whenever one of its children simplifies to P.

Then the expected size of the simplification of a random BST-like
tree has an asymptotic behaviour given by the following cases,
depending on the probability p~ of the absorbing operator:

0 1

p~
Θ(n)

almost no reduction

Θ(n
(logn)γ)

1
2

Θ(nθ)

significant

reduction

3−pI
4

Θ(log n)

Θ(1)

degenerate

case

I Probability p~ of ~, and pI of picking unary operator.

I Regimes from no reduction Θ(n) to complete reduction Θ(1)

11 / 20

Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ~ of arity 2.

Take the simplification consisting in inductively changing a ~-node
by P whenever one of its children simplifies to P.

Then the expected size of the simplification of a random BST-like
tree has an asymptotic behaviour given by the following cases,
depending on the probability p~ of the absorbing operator:

0 1

p~
Θ(n)

almost no reduction

Θ(n
(logn)γ)

1
2

Θ(nθ)

significant

reduction

3−pI
4

Θ(log n)

Θ(1)

degenerate

case

I Probability p~ of ~, and pI of picking unary operator.

I Regimes from no reduction Θ(n) to complete reduction Θ(1)

11 / 20

Theorem. Consider a family of expression trees defined from
unary and binary operators with an absorbing pattern P for an
operator ~ of arity 2.

Take the simplification consisting in inductively changing a ~-node
by P whenever one of its children simplifies to P.

Then the expected size of the simplification of a random BST-like
tree has an asymptotic behaviour given by the following cases,
depending on the probability p~ of the absorbing operator:

0 1

p~
Θ(n)

almost no reduction

Θ(n
(logn)γ)

1
2

Θ(nθ)

significant

reduction

3−pI
4

Θ(log n)

Θ(1)

degenerate

case

I Probability p~ of ~, and pI of picking unary operator.

I Regimes from no reduction Θ(n) to complete reduction Θ(1)

11 / 20

The main regimes experimentally

0 1

p~
Θ(n)

almost no reduction

Θ(n
(logn)γ)

1
2

Θ(nθ)

significant

reduction

3−pI
4

Θ(log n)

Θ(1)

degenerate

case

Experimental plots (10 000 samples) for regular expressions on two
letters a, b: P = (a+ b)? absorbing for union ~ = +

0 0.2 0.4 0.6 0.8 1 ·1070

0.2

0.4

0.6

0.8

1

·107

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1080

2

4

6

·106

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1090

2,000

4,000

6,000

8,000

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

Figure: Linear (p+ = p? = p· = 1
3), sublinear (p+ = 19

29 , p? = p· = 5
29)

and constant (p+ = 8
10 , p? = p· = 1

10).

12 / 20

The main regimes experimentally

0 1

p~
Θ(n)

almost no reduction

Θ(n
(logn)γ)

1
2

Θ(nθ)

significant

reduction

3−pI
4

Θ(log n)

Θ(1)

degenerate

case

Experimental plots (10 000 samples) for regular expressions on two
letters a, b: P = (a+ b)? absorbing for union ~ = +

0 0.2 0.4 0.6 0.8 1 ·1070

0.2

0.4

0.6

0.8

1

·107

size of the regular expression

si
ze

of
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1080

2

4

6

·106

size of the regular expression

si
ze

of
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1090

2,000

4,000

6,000

8,000

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

Figure: Linear (p+ = p? = p· = 1
3), sublinear (p+ = 19

29 , p? = p· = 5
29)

and constant (p+ = 8
10 , p? = p· = 1

10).
12 / 20

Scheme for the proof
We employ Analytic Combinatorics to study the expectation,

I Ordinary generating function

E(z) :=

∞∑
n=0

enz
n ,

encodes sequence en := En[|σ(T)|].

I Symbolic Step. We find a formal equation describing E(z).

Here this will be an ordinary differential equation

E′(z) = B(z) + C(z) · E(z) .

I Analytic Step. We look at E(z) over the complex z ∈ C.

A Transfer Theorem links the behaviour of E(z) at its
dominant singularity to asymptotics of en ⇒ Study singularities

E(z) ∼z→1 λ(1− z)−α =⇒ en ∼ λnα−1/Γ(α)

13 / 20

Scheme for the proof
We employ Analytic Combinatorics to study the expectation,

I Ordinary generating function

E(z) :=

∞∑
n=0

enz
n ,

encodes sequence en := En[|σ(T)|].
I Symbolic Step. We find a formal equation describing E(z).

Here this will be an ordinary differential equation

E′(z) = B(z) + C(z) · E(z) .

I Analytic Step. We look at E(z) over the complex z ∈ C.

A Transfer Theorem links the behaviour of E(z) at its
dominant singularity to asymptotics of en ⇒ Study singularities

E(z) ∼z→1 λ(1− z)−α =⇒ en ∼ λnα−1/Γ(α)

13 / 20

Scheme for the proof
We employ Analytic Combinatorics to study the expectation,

I Ordinary generating function

E(z) :=

∞∑
n=0

enz
n ,

encodes sequence en := En[|σ(T)|].
I Symbolic Step. We find a formal equation describing E(z).

Here this will be an ordinary differential equation

E′(z) = B(z) + C(z) · E(z) .

I Analytic Step. We look at E(z) over the complex z ∈ C.

A Transfer Theorem links the behaviour of E(z) at its
dominant singularity to asymptotics of en ⇒ Study singularities

E(z) ∼z→1 λ(1− z)−α =⇒ en ∼ λnα−1/Γ(α)

13 / 20

Symbolic step
We consider a fundamental sequence

γn := Pr
n
{σ(T) = P} ,

of the probabilities of full reduction.

First order differential equation for the generating function

E′(z) = F (z,A(z))+ 1
1−pIz

(
2
z−pI+2 (1− pI)

z
1−z−2p~A(z)

)
·E(z) ,

where A(z) =
∑

n γnz
n.

Proof. Recurrence for en involving γn,

en+1 = 1+(s− 1)γn+11n+16=s + pIen

+
2pII

n− 1

n−1∑
j=1

ej +
2p~
n− 1

n−1∑
j=1

(ej − sγj)(1− γn−j) ,

here pII := 1− pI − p~ and s = |P|.

14 / 20

Symbolic step
We consider a fundamental sequence

γn := Pr
n
{σ(T) = P} ,

of the probabilities of full reduction.

First order differential equation for the generating function

E′(z) = F (z,A(z))+ 1
1−pIz

(
2
z−pI+2 (1− pI)

z
1−z−2p~A(z)

)
·E(z) ,

where A(z) =
∑

n γnz
n.

Proof. Recurrence for en involving γn,

en+1 = 1+(s− 1)γn+11n+16=s + pIen

+
2pII

n− 1

n−1∑
j=1

ej +
2p~
n− 1

n−1∑
j=1

(ej − sγj)(1− γn−j) ,

here pII := 1− pI − p~ and s = |P|.

14 / 20

Symbolic step
We consider a fundamental sequence

γn := Pr
n
{σ(T) = P} ,

of the probabilities of full reduction.

First order differential equation for the generating function

E′(z) = F (z,A(z))+ 1
1−pIz

(
2
z−pI+2 (1− pI)

z
1−z−2p~A(z)

)
·E(z) ,

where A(z) =
∑

n γnz
n.

Proof. Recurrence for en involving γn,

en+1 = 1+(s− 1)γn+11n+16=s + pIen

+
2pII

n− 1

n−1∑
j=1

ej +
2p~
n− 1

n−1∑
j=1

(ej − sγj)(1− γn−j) ,

here pII := 1− pI − p~ and s = |P|.
14 / 20

Analytic step: the singularity z = 1

Symbolic step gives differential equation:

I First order differential equations can be solved explicitly,

I But coefficients depend on unknown generating function A(z).

To apply the Transfer Theorem and complete the proof:

I we show that A(z) and E(z) are analytic over Ω = C \ [1,∞),

I we require precise asymptotics for A(z) at z = 1.

Solution of ODE gives asymptotics

E(z) ∼ c

(1− z)2

(
2 +

∫ z

0

F (w,A(w))I(w)dw

)
(I(z))−1 , z → 1 ,

where I(z) := exp
(

2p~
∫ z
0

A(w)
1−pIw

dw
)

.

15 / 20

Analytic step: the singularity z = 1

Symbolic step gives differential equation:

I First order differential equations can be solved explicitly,

I But coefficients depend on unknown generating function A(z).

To apply the Transfer Theorem and complete the proof:

I we show that A(z) and E(z) are analytic over Ω = C \ [1,∞),

I we require precise asymptotics for A(z) at z = 1.

Solution of ODE gives asymptotics

E(z) ∼ c

(1− z)2

(
2 +

∫ z

0

F (w,A(w))I(w)dw

)
(I(z))−1 , z → 1 ,

where I(z) := exp
(

2p~
∫ z
0

A(w)
1−pIw

dw
)

.

15 / 20

Analytic step: the singularity z = 1

Symbolic step gives differential equation:

I First order differential equations can be solved explicitly,

I But coefficients depend on unknown generating function A(z).

To apply the Transfer Theorem and complete the proof:

I we show that A(z) and E(z) are analytic over Ω = C \ [1,∞),

I we require precise asymptotics for A(z) at z = 1.

Solution of ODE gives asymptotics

E(z) ∼ c

(1− z)2

(
2 +

∫ z

0

F (w,A(w))I(w)dw

)
(I(z))−1 , z → 1 ,

where I(z) := exp
(

2p~
∫ z
0

A(w)
1−pIw

dw
)

.

15 / 20

Fully reducible trees: probabilities

We study the generating function A(z) =
∑
γnz

n

Proposition

Generating function satisfies Riccati differential equation

A′(z) = (s− 2)γsz
s−1 +

(
2

z
+ 2p~

z

1− z

)
A(z)− p~ · (A(z))2 ,

where s = |P|.

Proof.

The probabilities γn = Prn {σ(T) = P} satisfy, for n ≥ |P|,

γn+1 =
p~
n− 1

n−1∑
k=1

(γk + γn−k − γkγn−k) .

16 / 20

Fully reducible trees: probabilities

We study the generating function A(z) =
∑
γnz

n

Proposition

Generating function satisfies Riccati differential equation

A′(z) = (s− 2)γsz
s−1 +

(
2

z
+ 2p~

z

1− z

)
A(z)− p~ · (A(z))2 ,

where s = |P|.

Proof.

The probabilities γn = Prn {σ(T) = P} satisfy, for n ≥ |P|,

γn+1 =
p~
n− 1

n−1∑
k=1

(γk + γn−k − γkγn−k) .

16 / 20

Analytic step: linearization of Riccati
Considering v(z) such that p~A(z) = v′(z)/v(z),

Riccati equation becomes linear

v′′(z) = p~ · (s− 2)γsz
s−1v(z) +

(
2

z
+ 2p~

z

1− z

)
v′(z) .

For linear ODEs:
I domain of analyticity well-understood.
I Frobenius method characterizes behaviour at singularities.

Proposition

The generating function A(z) satisfies, z → 1

I For p~ > 1
2 , A(z) = γ∞

1−z +O((1− z)2p~−2),

I For p~ = 1
2 , A(z) = 2

1−z

(
log
(

1
1−z

))−1(
1 +O

(
log
(

1
1−z

)−1))
I For p~ < 1

2 , A(z) ∼ D
(1−z)2p~ ,

where γ∞ := (2p~ − 1)/p~ and D > 0 is a constant.

17 / 20

Analytic step: linearization of Riccati
Considering v(z) such that p~A(z) = v′(z)/v(z),

Riccati equation becomes linear

v′′(z) = p~ · (s− 2)γsz
s−1v(z) +

(
2

z
+ 2p~

z

1− z

)
v′(z) .

For linear ODEs:
I domain of analyticity well-understood.
I Frobenius method characterizes behaviour at singularities.

Proposition

The generating function A(z) satisfies, z → 1

I For p~ > 1
2 , A(z) = γ∞

1−z +O((1− z)2p~−2),

I For p~ = 1
2 , A(z) = 2

1−z

(
log
(

1
1−z

))−1(
1 +O

(
log
(

1
1−z

)−1))
I For p~ < 1

2 , A(z) ∼ D
(1−z)2p~ ,

where γ∞ := (2p~ − 1)/p~ and D > 0 is a constant.

17 / 20

Analytic step: linearization of Riccati
Considering v(z) such that p~A(z) = v′(z)/v(z),

Riccati equation becomes linear

v′′(z) = p~ · (s− 2)γsz
s−1v(z) +

(
2

z
+ 2p~

z

1− z

)
v′(z) .

For linear ODEs:
I domain of analyticity well-understood.
I Frobenius method characterizes behaviour at singularities.

Proposition

The generating function A(z) satisfies, z → 1

I For p~ > 1
2 , A(z) = γ∞

1−z +O((1− z)2p~−2),

I For p~ = 1
2 , A(z) = 2

1−z

(
log
(

1
1−z

))−1(
1 +O

(
log
(

1
1−z

)−1))
I For p~ < 1

2 , A(z) ∼ D
(1−z)2p~ ,

where γ∞ := (2p~ − 1)/p~ and D > 0 is a constant.

17 / 20

Probability of full reduction

Theorem

The probability γn of being fully reducible tends to the constant
γ∞ := (2p~ − 1)/p~ for p~ >

1
2 , and to zero for p~ ≤ 1

2 .

Experimental plot:
regular expressions on
two letters with

(p+, p•, p?) = (8
10 ,

1
10 ,

1
10) .

Then

lim
n→∞

γn = 3/4 .

101 103 105 107
n0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Prop. fully reducible

18 / 20

Probability of full reduction

Theorem

The probability γn of being fully reducible tends to the constant
γ∞ := (2p~ − 1)/p~ for p~ >

1
2 , and to zero for p~ ≤ 1

2 .

Experimental plot:
regular expressions on
two letters with

(p+, p•, p?) = (8
10 ,

1
10 ,

1
10) .

Then

lim
n→∞

γn = 3/4 .

101 103 105 107
n0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Prop. fully reducible

18 / 20

Conclusions and further work

Conclusions

~ BST-like expression trees present a richer range of behaviours
than the uniform ones.

~ Not exempt of degenerate cases however
⇒ tuning probabilities might be important.

Questions and further work

1. Absorbing operator ~ of arity a ≥ 3 ?
⇒ expect similar results, threshold 1

a instead of 1
2 .

2. Absorbing pattern model is general
⇒ consider interactions between operators?

3. Take a concrete case: LTL formulas.

19 / 20

Conclusions and further work

Conclusions

~ BST-like expression trees present a richer range of behaviours
than the uniform ones.

~ Not exempt of degenerate cases however
⇒ tuning probabilities might be important.

Questions and further work

1. Absorbing operator ~ of arity a ≥ 3 ?
⇒ expect similar results, threshold 1

a instead of 1
2 .

2. Absorbing pattern model is general
⇒ consider interactions between operators?

3. Take a concrete case: LTL formulas.

19 / 20

Conclusions and further work

Conclusions

~ BST-like expression trees present a richer range of behaviours
than the uniform ones.

~ Not exempt of degenerate cases however
⇒ tuning probabilities might be important.

Questions and further work

1. Absorbing operator ~ of arity a ≥ 3 ?
⇒ expect similar results, threshold 1

a instead of 1
2 .

2. Absorbing pattern model is general
⇒ consider interactions between operators?

3. Take a concrete case: LTL formulas.

19 / 20

Conclusions and further work

Conclusions

~ BST-like expression trees present a richer range of behaviours
than the uniform ones.

~ Not exempt of degenerate cases however
⇒ tuning probabilities might be important.

Questions and further work

1. Absorbing operator ~ of arity a ≥ 3 ?

⇒ expect similar results, threshold 1
a instead of 1

2 .

2. Absorbing pattern model is general
⇒ consider interactions between operators?

3. Take a concrete case: LTL formulas.

19 / 20

Conclusions and further work

Conclusions

~ BST-like expression trees present a richer range of behaviours
than the uniform ones.

~ Not exempt of degenerate cases however
⇒ tuning probabilities might be important.

Questions and further work

1. Absorbing operator ~ of arity a ≥ 3 ?
⇒ expect similar results, threshold 1

a instead of 1
2 .

2. Absorbing pattern model is general
⇒ consider interactions between operators?

3. Take a concrete case: LTL formulas.

19 / 20

Conclusions and further work

Conclusions

~ BST-like expression trees present a richer range of behaviours
than the uniform ones.

~ Not exempt of degenerate cases however
⇒ tuning probabilities might be important.

Questions and further work

1. Absorbing operator ~ of arity a ≥ 3 ?
⇒ expect similar results, threshold 1

a instead of 1
2 .

2. Absorbing pattern model is general
⇒ consider interactions between operators?

3. Take a concrete case: LTL formulas.

19 / 20

Conclusions and further work

Conclusions

~ BST-like expression trees present a richer range of behaviours
than the uniform ones.

~ Not exempt of degenerate cases however
⇒ tuning probabilities might be important.

Questions and further work

1. Absorbing operator ~ of arity a ≥ 3 ?
⇒ expect similar results, threshold 1

a instead of 1
2 .

2. Absorbing pattern model is general
⇒ consider interactions between operators?

3. Take a concrete case: LTL formulas.

19 / 20

Thank you!

20 / 20

	Model: BST-like trees and absorbing patterns
	Main Theorem and outline of the proof
	Conclusions

