Uniform Random Expressions Lack Expressivity

Pablo Rotondo
LIGM, Université Paris-Est Marne-la-Vallée

Joint work with
Florent Koechlin and Cyril Nicaud
LIGM, Université Paris-Est Marne-la-Vallée

MFCS 19',
Aachen, 28 August, 2019.

Introduction

- Uniformly random input
- Yields diverse values
- Convenient methods: recursive, Boltzmann samplers.

Introduction

- Uniformly random input
- Yields diverse values
- Convenient methods: recursive, Boltzmann samplers.
- Automated testing, benchmark testing
- Correctness and performance of algorithms

Introduction

- Uniformly random input
- Yields diverse values
- Convenient methods: recursive, Boltzmann samplers.
- Automated testing, benchmark testing
- Correctness and performance of algorithms
- Expression trees

Introduction

- Uniformly random input
- Yields diverse values
- Convenient methods: recursive, Boltzmann samplers.
- Automated testing, benchmark testing
- Correctness and performance of algorithms
- Expression trees

Distribution of the resulting objects? \Rightarrow may be bad!

Plan of the talk

1. Expression trees
2. Random expressions and results
3. Toolbox
4. Conclusions

Combinatorial expressions

Let $\mathcal{A}=\left(\mathcal{A}_{i}\right)_{i}$ be a family of finite sets of labels, indexed on $\mathbb{Z}_{\geq 0}$, with the conditions $\mathcal{A}_{0} \neq \emptyset$ and $\mathcal{A}_{i} \neq \emptyset$ for some $i \geq 2$.

Definition

A combinatorial expression on \mathcal{A} is a rooted tree in which nodes of arity i are labeled exclusively on \mathcal{A}_{i}.

We denote the set of all combinatorial expressions by $\mathcal{L}=\mathcal{L}(\mathcal{A})$.

Combinatorial expressions

Let $\mathcal{A}=\left(\mathcal{A}_{i}\right)_{i}$ be a family of finite sets of labels, indexed on $\mathbb{Z}_{\geq 0}$, with the conditions $\mathcal{A}_{0} \neq \emptyset$ and $\mathcal{A}_{i} \neq \emptyset$ for some $i \geq 2$.

Definition

A combinatorial expression on \mathcal{A} is a rooted tree in which nodes of arity i are labeled exclusively on \mathcal{A}_{i}.

We denote the set of all combinatorial expressions by $\mathcal{L}=\mathcal{L}(\mathcal{A})$.
Our battle horse
Regular expressions \mathcal{L}_{R} over the alphabet $\{a, b\}$ are defined by

$$
\mathcal{L}_{R}=a+b+\varepsilon+\stackrel{\star}{\stackrel{\star}{\mathcal{L}_{R}}}+\underset{\mathcal{L}_{R}}{\stackrel{\wedge}{\mathcal{L}_{R}}}+\underset{\mathcal{L}_{R} \mathcal{L}_{R}}{\stackrel{+}{\wedge}}
$$

Combinatorial expressions

Let $\mathcal{A}=\left(\mathcal{A}_{i}\right)_{i}$ be a family of finite sets of labels, indexed on $\mathbb{Z}_{\geq 0}$, with the conditions $\mathcal{A}_{0} \neq \emptyset$ and $\mathcal{A}_{i} \neq \emptyset$ for some $i \geq 2$.

Definition

A combinatorial expression on \mathcal{A} is a rooted tree in which nodes of arity i are labeled exclusively on \mathcal{A}_{i}.

We denote the set of all combinatorial expressions by $\mathcal{L}=\mathcal{L}(\mathcal{A})$.
Our battle horse
Regular expressions \mathcal{L}_{R} over the alphabet $\{a, b\}$ are defined by

$$
\mathcal{L}_{R}=a+b+\varepsilon+\stackrel{\star}{\stackrel{\mathcal{L}_{R}}{\mid}}+\underset{\mathcal{L}_{R} \mathcal{L}_{R}}{\stackrel{\bullet}{\mathcal{L}_{R}}}+\stackrel{+}{\stackrel{+}{\mathcal{L}_{R}}} .
$$

Equivalently, combinatorial expressions with labels

$$
\mathcal{A}_{0}=\{a, b, \varepsilon\}, \quad \mathcal{A}_{1}=\{\star\}, \quad \mathcal{A}_{2}=\{\bullet,+\}
$$

and $\mathcal{A}_{i}=\emptyset$ for $i \geq 3$.

Combinatorial expressions and Analytic Combinatorics

Expressions naturally adapted to Analytic Combinatorics

- size $|T|$ of tree expression $T \in \mathcal{L}$ given by number of nodes.

Combinatorial expressions and Analytic Combinatorics

Expressions naturally adapted to Analytic Combinatorics

- size $|T|$ of tree expression $T \in \mathcal{L}$ given by number of nodes.
- consider the ordinary generating function $L(z)=\sum_{T \in \mathcal{L}} z^{|T|}$

Combinatorial expressions and Analytic Combinatorics

Expressions naturally adapted to Analytic Combinatorics

- size $|T|$ of tree expression $T \in \mathcal{L}$ given by number of nodes.
- consider the ordinary generating function $L(z)=\sum_{T \in \mathcal{L}} z^{|T|}$
- coefficient $\left[z^{n}\right] L(z)$ counts tree expressions with n nodes.

Combinatorial expressions and Analytic Combinatorics

Expressions naturally adapted to Analytic Combinatorics

- size $|T|$ of tree expression $T \in \mathcal{L}$ given by number of nodes.
- consider the ordinary generating function $L(z)=\sum_{T \in \mathcal{L}} z^{|T|}$
- coefficient $\left[z^{n}\right] L(z)$ counts tree expressions with n nodes.
\Longrightarrow Specification translates into functional equation

$$
\mathcal{L}_{R}=a+b+\varepsilon+\stackrel{\star}{\mathcal{L}_{R}}+{\stackrel{\bullet}{\mathcal{L}_{R}} \mathcal{L}_{R}}_{\stackrel{\bullet}{\mathcal{L}_{R} \mathcal{L}_{R}}}^{\stackrel{+}{\wedge}} \Rightarrow L(z)=3 z+z L(z)+2 z(L(z))^{2} .
$$

Combinatorial expressions and Analytic Combinatorics

Expressions naturally adapted to Analytic Combinatorics

- size $|T|$ of tree expression $T \in \mathcal{L}$ given by number of nodes.
- consider the ordinary generating function $L(z)=\sum_{T \in \mathcal{L}} z^{|T|}$
- coefficient $\left[z^{n}\right] L(z)$ counts tree expressions with n nodes.
\Longrightarrow Specification translates into functional equation

More generally, for combinatorial expressions

$$
L(z)=z \cdot \phi(L(z)), \quad \phi(z):=\sum_{i=0}^{\infty}\left|\mathcal{A}_{i}\right| z^{i}
$$

Absorbing patterns: simplifying the trees

$$
\mathcal{L}_{R}=a+b+\varepsilon+\stackrel{\star}{\stackrel{\mathcal{L}_{R}}{\mid}}+\underset{\mathcal{L}_{R} \mathcal{L}_{R}}{\stackrel{\bullet}{\left(\mathcal{L}_{R} \mathcal{L}_{R}\right.}}+\stackrel{+}{\stackrel{+}{2}} .
$$

- Representation of languages not minimal.

Absorbing patterns: simplifying the trees

$$
\mathcal{L}_{R}=a+b+\varepsilon+{\stackrel{\star}{\mathcal{L}_{R}}}_{\stackrel{\star}{\mathcal{L}_{R}}}^{\stackrel{\bullet}{\mathcal{L}_{R}}}+\stackrel{+}{\mathcal{L}_{R} \mathcal{L}_{R}} .
$$

- Representation of languages not minimal.
- Perform simple reductions on trees
- Let $\mathcal{P}:=\stackrel{\star}{\iota_{a}} \stackrel{+}{\Lambda_{b}}$, representing language of all words.
- Make the (quite simple) reductions

$$
\stackrel{+}{\mathcal{P}} \rightsquigarrow \mathcal{P} \quad \stackrel{+}{\text { 分 }} \rightsquigarrow \mathcal{P}
$$

Absorbing patterns: simplifying the trees

$$
\mathcal{L}_{R}=a+b+\varepsilon+{\stackrel{\star}{\mathcal{L}_{R}}}_{\stackrel{\star}{\mathcal{L}_{R}}}^{\stackrel{\bullet}{\mathcal{L}_{R}}}+\underset{\mathcal{L}_{R} \mathcal{L}_{R}}{\stackrel{+}{\wedge}} .
$$

- Representation of languages not minimal.
- Perform simple reductions on trees
- Let $\mathcal{P}:=\stackrel{\star}{\iota_{a}} \stackrel{+}{\bigwedge_{b}}$, representing language of all words.
- Make the (quite simple) reductions

$$
\stackrel{+}{\mathcal{P}} \rightsquigarrow \mathcal{P} \quad \stackrel{+}{\text { 分 }} \rightsquigarrow \mathcal{P}
$$

This is an absorbing pattern, element \mathcal{P} reduces the operator + .

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)
Let \mathcal{L} be the family of combinatorial expressions over $\mathcal{A}=\left(\mathcal{A}_{i}\right)$, consider

- an "operation" $\circledast \in \mathcal{A}_{a}$ with arity $a \geq 2$,
- an expression tree $\mathcal{P} \in \mathcal{L}$.

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Let \mathcal{L} be the family of combinatorial expressions over $\mathcal{A}=\left(\mathcal{A}_{i}\right)$, consider

- an "operation" $\circledast \in \mathcal{A}_{a}$ with arity $a \geq 2$,
- an expression tree $\mathcal{P} \in \mathcal{L}$.

We simplify by applying bottom-up the rule:

$$
\begin{aligned}
& \text { * } \\
& / \backslash \rightsquigarrow \mathcal{P} \text {, whenever } C_{i}=\mathcal{P} \text { for some } i \in\{1, \ldots, a\} \text {. } \\
& C_{1} \cdots C_{a}
\end{aligned}
$$

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Let \mathcal{L} be the family of combinatorial expressions over $\mathcal{A}=\left(\mathcal{A}_{i}\right)$, consider

- an "operation" $\circledast \in \mathcal{A}_{a}$ with arity $a \geq 2$,
- an expression tree $\mathcal{P} \in \mathcal{L}$.

We simplify by applying bottom-up the rule:

$$
\stackrel{\circledast}{C_{1} \cdots C_{a}} \rightsquigarrow \underset{\mathcal{P}}{ } \text {, whenever } C_{i}=\mathcal{P} \text { for some } i \in\{1, \ldots, a\} \text {. }
$$

\Rightarrow We are interested in the size of the trees after simplification.

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Let \mathcal{L} be the family of combinatorial expressions over $\mathcal{A}=\left(\mathcal{A}_{i}\right)$, consider

- an "operation" $\circledast \in \mathcal{A}_{a}$ with arity $a \geq 2$,
- an expression tree $\mathcal{P} \in \mathcal{L}$.

We simplify by applying bottom-up the rule:

$$
\stackrel{\circledast}{C_{1} \cdots C_{a}} \rightsquigarrow \underset{\mathcal{P}}{ } \text {, whenever } C_{i}=\mathcal{P} \text { for some } i \in\{1, \ldots, a\} \text {. }
$$

\Rightarrow We are interested in the size of the trees after simplification.
Denote by $\sigma(T)=\sigma(T, \mathcal{P}, \circledast)$ the simplification of $T \in \mathcal{L}$.

Model for random trees

In our work we

- draw an expression tree of size n uniformly at random.
- study expected values and moments of sizes of reduced expressions as $n \rightarrow \infty$.

Model for random trees

In our work we

- draw an expression tree of size n uniformly at random.
- study expected values and moments of sizes of reduced expressions as $n \rightarrow \infty$.

The average size seemingly tends linearly to infinity...

Model for random trees

In our work we

- draw an expression tree of size n uniformly at random.
- study expected values and moments of sizes of reduced expressions as $n \rightarrow \infty$.

The average size seemingly tends linearly to infinity... yet it does not!

Main result

Theorem (Informal version)
Consider a simple variety of expressions with an absorbing pattern \mathcal{P} for one of the operators \circledast.

Take the simplification consisting in inductively changing a \circledast-node by \mathcal{P} whenever one of its children simplifies to \mathcal{P}.

Then the expected size of the simplification of a uniform random expression of size n tends to a constant δ as n tends to infinity.

Main result

Theorem (Informal version)
Consider a simple variety of expressions with an absorbing pattern \mathcal{P} for one of the operators \circledast.

Take the simplification consisting in inductively changing a \circledast-node by \mathcal{P} whenever one of its children simplifies to \mathcal{P}.

Then the expected size of the simplification of a uniform random expression of size n tends to a constant δ as n tends to infinity.

Example
For the regular expressions \mathcal{L}_{R} on $\{a, b\}$,

$$
\delta \approx 3624217
$$

Main result

Theorem
Let $\mathcal{L}=\mathcal{L}(\mathcal{A})$ a set of combinatorial expressions whose GF $L(z)$ belongs to the smooth inverse-function schema $L(z)=z \cdot \phi(L(z))$, with ϕ aperiodic. Let $\mathcal{P} \in \mathcal{L}$ and let \circledast be an operator of arity ≥ 2.

Main result

Theorem
Let $\mathcal{L}=\mathcal{L}(\mathcal{A})$ a set of combinatorial expressions whose GF $L(z)$ belongs to the smooth inverse-function schema $L(z)=z \cdot \phi(L(z))$, with ϕ aperiodic. Let $\mathcal{P} \in \mathcal{L}$ and let \circledast be an operator of arity ≥ 2.

These hypotheses apply to a wide variety of expression families:

For logical formulas (operator \vee).
For regular expressions (operator +).

$$
x \mapsto 0
$$

For functions (operator .).

Main result

Theorem
Let $\mathcal{L}=\mathcal{L}(\mathcal{A})$ a set of combinatorial expressions whose GF $L(z)$ belongs to the smooth inverse-function schema $L(z)=z \cdot \phi(L(z))$, with ϕ aperiodic. Let $\mathcal{P} \in \mathcal{L}$ and let \circledast be an operator of arity ≥ 2.

Then, if $\sigma:=s(T, \mathcal{P}, \circledast)$, where $|T|=n$ is chosen uniformly at random,

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{n}[\sigma]=\delta,
$$

for some $0<\delta<\infty$. Furthermore, for $i \in \mathbb{Z}_{\geq 1}$,

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{n}\left[\sigma^{i}\right]=\delta_{i}
$$

for some positive δ_{i}.

Intuitions

Definition (Completely reducible expressions)

An expression tree T is completely reducible when $s(T, \mathcal{P}, \circledast)=\mathcal{P}$.

Intuitions

Definition (Completely reducible expressions)

An expression tree T is completely reducible when $s(T, \mathcal{P}, \circledast)=\mathcal{P}$.

Completely reducible expressions

- are not a rarity

$$
\lim _{n \rightarrow \infty} \mathbb{P}_{n}(T \text { completely reducible })=C>0
$$

Intuitions

Definition (Completely reducible expressions)

An expression tree T is completely reducible when $s(T, \mathcal{P}, \circledast)=\mathcal{P}$.

Completely reducible expressions

- are not a rarity

$$
\lim _{n \rightarrow \infty} \mathbb{P}_{n}(T \text { completely reducible })=C>0
$$

- dictate the reduction process:
leaves of the reduced expression.

Intuitions

Definition (Completely reducible expressions)

An expression tree T is completely reducible when $s(T, \mathcal{P}, \circledast)=\mathcal{P}$.

Completely reducible expressions

- are not a rarity

$$
\lim _{n \rightarrow \infty} \mathbb{P}_{n}(T \text { completely reducible })=C>0
$$

- dictate the reduction process:
leaves of the reduced expression.
- can also be specified recursively, e.g.,

$$
\mathcal{R}=\mathcal{P}+\underset{\mathcal{R}}{+}{ }_{\mathcal{L}}^{+}+{\underset{\mathcal{L}}{ }{ }^{\prime}{ }_{\mathcal{R}}}^{+}
$$

Proof principles: symbolic steps

Proof based on principles of Analytic Combinatorics:

Proof principles: symbolic steps

Proof based on principles of Analytic Combinatorics:

- bivariate generating functions

$$
L(z, u)=\sum_{T \in \mathcal{L}} z^{|T|} u^{\sigma(T)} \Longrightarrow \mathbb{E}_{n}[\sigma]=\frac{\left.\left[z^{n}\right] \partial_{u} L(z, u)\right|_{u=1}}{\left.\left[z^{n}\right] L(z, u)\right|_{u=1}}
$$

Proof principles: symbolic steps

Proof based on principles of Analytic Combinatorics:

- bivariate generating functions

$$
L(z, u)=\sum_{T \in \mathcal{L}} z^{|T|} u^{\sigma(T)} \Longrightarrow \mathbb{E}_{n}[\sigma]=\frac{\left.\left[z^{n}\right] \partial_{u} L(z, u)\right|_{u=1}}{\left.\left[z^{n}\right] L(z, u)\right|_{u=1}},
$$

- need appropriate expression for $L(z, u)$, e.g.,

$$
\mathcal{L}_{R}=a+b+\varepsilon+\mathcal{R} \backslash\{\mathcal{P}\}+{ }_{\mathcal{L}_{R} \backslash \mathcal{R}} \stackrel{+}{\mathcal{L}_{R} \backslash \mathcal{R}}+{ }_{\mathcal{L}_{R}} \stackrel{\wedge_{\mathcal{L}_{R}}}{ }+\stackrel{\star}{\stackrel{\star}{\mathcal{L}_{R}}}
$$

\Longrightarrow functional equation for $L(z, u)$ involving $R(z, u)$.

Proof principles: analytic step

Theorem (Classical, see Flajolet\&Sedgewick)
Let \mathcal{L} be a set of combinatorial expressions whose GF $L(z)$ belongs to the smooth inverse-function schema $L(z)=z \cdot \phi(L(z))$.
Let $\tau>0$ be the solution of $\phi(\tau)-\tau \phi^{\prime}(\tau)=0$, and $\rho:=\tau / \phi(\tau)$.
Then we have that $L(z)=g(z)-h(z) \sqrt{1-z / \rho}$ around $z=\rho$.
Transfer Theorem
When ϕ is aperiodic, this implies $\left[z^{n}\right] L(z) \sim C_{L} \rho^{-n} / n^{3 / 2}$.

Proof principles: analytic step

Theorem (Classical, see Flajolet\&Sedgewick)
Let \mathcal{L} be a set of combinatorial expressions whose GF $L(z)$ belongs to the smooth inverse-function schema $L(z)=z \cdot \phi(L(z))$.
Let $\tau>0$ be the solution of $\phi(\tau)-\tau \phi^{\prime}(\tau)=0$, and $\rho:=\tau / \phi(\tau)$.
Then we have that $L(z)=g(z)-h(z) \sqrt{1-z / \rho}$ around $z=\rho$.
Transfer Theorem
When ϕ is aperiodic, this implies $\left[z^{n}\right] L(z) \sim C_{L} \rho^{-n} / n^{3 / 2}$.

For expectations we make use of extensions by Drmota

- $R(z)$, the GF of the completely reducible trees, [Multidim]
- $\left.\partial_{u} L(z, u)\right|_{u=1}$, the numerator of the expectation, [Closure] and then recall $\mathbb{E}_{n}[\sigma]=\left.\left[z^{n}\right] \partial_{u} L(z, u)\right|_{u=1} /\left.\left[z^{n}\right] L(z, u)\right|_{u=1}$.

Conclusions and further work

Conclusions
\circledast Uniform random expressions often are not a suitable model.

Conclusions and further work

Conclusions

* Uniform random expressions often are not a suitable model.
\circledast Algorithms with polynomial worst case
\Rightarrow constant on average after simplification (linear).

Conclusions and further work

Conclusions

* Uniform random expressions often are not a suitable model.
\circledast Algorithms with polynomial worst case
\Rightarrow constant on average after simplification (linear).
$*$ The constant $\delta \approx 3.6 \times 10^{6}$ may seem humongous
\Rightarrow adding simplification rules we reduce it to ≈ 75.

Conclusions and further work

Conclusions

* Uniform random expressions often are not a suitable model.
\circledast Algorithms with polynomial worst case
\Rightarrow constant on average after simplification (linear).
$*$ The constant $\delta \approx 3.6 \times 10^{6}$ may seem humongous \Rightarrow adding simplification rules we reduce it to ≈ 75.

Questions and further work

1. Extend results to multidimensional systems of trees.

Conclusions and further work

Conclusions

* Uniform random expressions often are not a suitable model.
\circledast Algorithms with polynomial worst case
\Rightarrow constant on average after simplification (linear).
$*$ The constant $\delta \approx 3.6 \times 10^{6}$ may seem humongous \Rightarrow adding simplification rules we reduce it to ≈ 75.

Questions and further work

1. Extend results to multidimensional systems of trees.
2. Experiments suggest that a similar situation holds for BSTs

Conclusions and further work

Conclusions

* Uniform random expressions often are not a suitable model.
$*$ Algorithms with polynomial worst case
\Rightarrow constant on average after simplification (linear).
\circledast The constant $\delta \approx 3.6 \times 10^{6}$ may seem humongous \Rightarrow adding simplification rules we reduce it to ≈ 75.

Questions and further work

1. Extend results to multidimensional systems of trees.
2. Experiments suggest that a similar situation holds for BSTs
3. Find suitable model!

Thank you!

