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Let A = (A;); be a family of finite sets of labels, indexed on Z>,
with the conditions Ay # 0 and A; # () for some ¢ > 2.
Definition
A combinatorial expression on A is a rooted tree in which nodes of
arity 4 are labeled exclusively on A,.

We denote the set of all combinatorial expressions by £ = L(A).

Our battle horse
Regular expressions Ly over the alphabet {a,b} are defined by

* ° —+
Lr= b | /\
R=a+ +E+£R+£R£R+£R/\£R

Equivalently, combinatorial expressions with labels

AOZ{aab’g}a Alz{*}a A2:{.7+}a

and A; = 0 for ¢ > 3.
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Expressions naturally adapted to Analytic Combinatorics

» size |T'| of tree expression T' € L given by number of nodes.
» consider the ordinary generating function L(z) = > rcp 2T

» coefficient [2"|L(z) counts tree expressions with n nodes.

= Specification translates into functional equation

Lp = atbtet | \ +, A+ /\ = L(2) = 3z+2L(2)+22(L(2))%.

RﬁR »CR ER

More generally, for

L(z) =z ¢(L(2),  (z) =) |Alz".
=0
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* o —+
LR:a+b+€+£|R+LR/\£ + A
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> Representation of languages not minimal.

» Perform simple reductions on trees

*

\
o let P := /+\ , representing language of all words.
a b

e Make the (quite simple) reductions
+ +

\ P /

/ \ ~ P
P SPp

This is an , element P reduces the operator +.
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Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Let £ be the family of combinatorial expressions over A = (A;),
consider

> an “operation” ® € A, with arity a > 2,

> an expression tree P € L.

We simplify by applying bottom-up the rule:

®
/ \ ~ P, whenever C; =P for some i € {1,...,a}.
Cy---C,

= We are interested in the size of the trees after simplification.

Denote by o(T') = o(T,P,®) the simplification of T' € L.
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Model for random trees
In our work we
» draw an expression tree of size n uniformly at random.
» study expected values and moments of
sizes of reduced expressions as n — 00.
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The average size seemingly tends linearly to infinity... yet it does not!
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Then the expected size of the simplification of a uniform random
expression of size n tends to a constant & as n tends to infinity.
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Example
For the regular expressions L on {a,b},
0~ 3624 217 .
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Main result

Theorem

Let L = L(.A) a set of combinatorial expressions whose GF L(z)
belongs to the smooth inverse-function schema L(z) = z - ¢(L(z)),
with ¢ aperiodic. Let P € L and let ® be an operator of arity > 2.

Then, if o := s(T,P,®), where |T'| = n is chosen uniformly at
random,

lim E,[o] =0,

n—oo

for some 0 < 6§ < co. Furthermore, fori € Z>1,

lim E,[0'] = §;

n—oo

for some positive §;.
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Intuitions

Definition (Completely reducible expressions)
An expression tree T' is completely reducible when s(T, P, ®) = P.}

Completely reducible expressions

> are not a rarity

lim P, (Tcompletely reducible) = C' > 0.

n—oo

> dictate the reduction process:
leaves of the reduced expression.

> can also be specified recursively, e.g.,

+ +
R=P+ /\ + /\ .
R L L R
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Proof principles: symbolic steps
Proof based on principles of Analytic Combinatorics:

Problem |——> Combinatorial

Specification \

Asymptotics!|««———— Generating function
Singularity
Analysis

> bivariate generating functions

Lizyu) = Y 7D — B, o] = Eliebemlbn,
TeLl

» need appropriate expression for L(z,u), e.g.,

*

+ °
£R=a+b+s+R\{P}+£ /\ SN

r\R Lr\R £Lr Lr R

= functional equation for L(z,u) involving R(z,u).



Proof principles: analytic step

Theorem (Classical, see Flajolet&Sedgewick)

Let L be a set of combinatorial expressions whose GF L(z) belongs
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Proof principles: analytic step

Theorem (Classical, see Flajolet& Sedgewick)

Let L be a set of combinatorial expressions whose GF L(z) belongs
to the smooth inverse-function schema L(z) = z - ¢(L(z)).

Let T > 0 be the solution of (1) — 7¢/(1) =0, and p := 7/¢(7).
Then we have that L(z) = g(z) — h(z)\/1 — z/p around z = p.

v

Transfer Theorem
When ¢ is aperiodic, this implies [2"|L(z) ~ Cp~™/n%/%.

For expectations we make use of extensions by Drmota
» R(z), the GF of the completely reducible trees, [Multidim]
» 0yL(z,u)|y=1, the numerator of the expectation, [Closure]
and then recall E, [0] = [2"]|0uL(2, u)|u=1/[2"]L(2, u)|u=1-
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Conclusions
® Uniform random expressions often are not a suitable model.

® Algorithms with polynomial worst case
= constant on average after simplification (linear).

® The constant § ~ 3.6 x 105 may seem humongous
= adding simplification rules we reduce it to ~ 75.

Questions and further work
1. Extend results to systems of trees.
2. Experiments suggest that a similar situation holds for BSTs
3. Find suitable model!



Thank you!



	Expression trees
	Random expressions and results
	Toolbox
	Conclusions

