
Uniform Random Expressions Lack Expressivity

Pablo Rotondo
LIGM, Université Paris-Est Marne-la-Vallée

Joint work with

Florent Koechlin and Cyril Nicaud

LIGM, Université Paris-Est Marne-la-Vallée

MFCS 19’,
Aachen, 28 August, 2019.

Introduction

I Uniformly random input

• Yields diverse values

• Convenient methods: recursive, Boltzmann samplers.

I Automated testing, benchmark testing

• Correctness and performance of algorithms

I Expression trees

⇒

� ©

∨ ¬

a b c

�(a ∨ b)⇒©¬c

?

•

b +

a ε

(b · (a+ ε))?

exp

/

x +

1 x

exp(x
1+x

)

Distribution of the resulting objects? ⇒ may be bad!

Introduction

I Uniformly random input

• Yields diverse values

• Convenient methods: recursive, Boltzmann samplers.

I Automated testing, benchmark testing

• Correctness and performance of algorithms

I Expression trees

⇒

� ©

∨ ¬

a b c

�(a ∨ b)⇒©¬c

?

•

b +

a ε

(b · (a+ ε))?

exp

/

x +

1 x

exp(x
1+x

)

Distribution of the resulting objects? ⇒ may be bad!

Introduction

I Uniformly random input

• Yields diverse values

• Convenient methods: recursive, Boltzmann samplers.

I Automated testing, benchmark testing

• Correctness and performance of algorithms

I Expression trees

⇒

� ©

∨ ¬

a b c

�(a ∨ b)⇒©¬c

?

•

b +

a ε

(b · (a+ ε))?

exp

/

x +

1 x

exp(x
1+x

)

Distribution of the resulting objects? ⇒ may be bad!

Introduction

I Uniformly random input

• Yields diverse values

• Convenient methods: recursive, Boltzmann samplers.

I Automated testing, benchmark testing

• Correctness and performance of algorithms

I Expression trees

⇒

� ©

∨ ¬

a b c

�(a ∨ b)⇒©¬c

?

•

b +

a ε

(b · (a+ ε))?

exp

/

x +

1 x

exp(x
1+x

)

Distribution of the resulting objects? ⇒ may be bad!

Plan of the talk

1. Expression trees

2. Random expressions and results

3. Toolbox

4. Conclusions

Combinatorial expressions
Let A = (Ai)i be a family of finite sets of labels, indexed on Z≥0,
with the conditions A0 6= ∅ and Ai 6= ∅ for some i ≥ 2.

Definition

A combinatorial expression on A is a rooted tree in which nodes of
arity i are labeled exclusively on Ai.

We denote the set of all combinatorial expressions by L = L(A).

Our battle horse

Regular expressions LR over the alphabet {a, b} are defined by

LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
.

Equivalently, combinatorial expressions with labels

A0 = {a, b, ε} , A1 = {?} , A2 = {•,+} ,

and Ai = ∅ for i ≥ 3.

Combinatorial expressions
Let A = (Ai)i be a family of finite sets of labels, indexed on Z≥0,
with the conditions A0 6= ∅ and Ai 6= ∅ for some i ≥ 2.

Definition

A combinatorial expression on A is a rooted tree in which nodes of
arity i are labeled exclusively on Ai.

We denote the set of all combinatorial expressions by L = L(A).

Our battle horse

Regular expressions LR over the alphabet {a, b} are defined by

LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
.

Equivalently, combinatorial expressions with labels

A0 = {a, b, ε} , A1 = {?} , A2 = {•,+} ,

and Ai = ∅ for i ≥ 3.

Combinatorial expressions
Let A = (Ai)i be a family of finite sets of labels, indexed on Z≥0,
with the conditions A0 6= ∅ and Ai 6= ∅ for some i ≥ 2.

Definition

A combinatorial expression on A is a rooted tree in which nodes of
arity i are labeled exclusively on Ai.

We denote the set of all combinatorial expressions by L = L(A).

Our battle horse

Regular expressions LR over the alphabet {a, b} are defined by

LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
.

Equivalently, combinatorial expressions with labels

A0 = {a, b, ε} , A1 = {?} , A2 = {•,+} ,

and Ai = ∅ for i ≥ 3.

Combinatorial expressions and Analytic Combinatorics

Expressions naturally adapted to Analytic Combinatorics

I size |T | of tree expression T ∈ L given by number of nodes.

I consider the ordinary generating function L(z) =
∑

T∈L z
|T |

I coefficient [zn]L(z) counts tree expressions with n nodes.

=⇒ Specification translates into functional equation

LR = a+b+ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
⇒ L(z) = 3z+zL(z)+2z(L(z))2 .

More generally, for combinatorial expressions

L(z) = z · φ(L(z)) , φ(z) :=

∞∑
i=0

|Ai| zi .

Combinatorial expressions and Analytic Combinatorics

Expressions naturally adapted to Analytic Combinatorics

I size |T | of tree expression T ∈ L given by number of nodes.

I consider the ordinary generating function L(z) =
∑

T∈L z
|T |

I coefficient [zn]L(z) counts tree expressions with n nodes.

=⇒ Specification translates into functional equation

LR = a+b+ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
⇒ L(z) = 3z+zL(z)+2z(L(z))2 .

More generally, for combinatorial expressions

L(z) = z · φ(L(z)) , φ(z) :=

∞∑
i=0

|Ai| zi .

Combinatorial expressions and Analytic Combinatorics

Expressions naturally adapted to Analytic Combinatorics

I size |T | of tree expression T ∈ L given by number of nodes.

I consider the ordinary generating function L(z) =
∑

T∈L z
|T |

I coefficient [zn]L(z) counts tree expressions with n nodes.

=⇒ Specification translates into functional equation

LR = a+b+ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
⇒ L(z) = 3z+zL(z)+2z(L(z))2 .

More generally, for combinatorial expressions

L(z) = z · φ(L(z)) , φ(z) :=

∞∑
i=0

|Ai| zi .

Combinatorial expressions and Analytic Combinatorics

Expressions naturally adapted to Analytic Combinatorics

I size |T | of tree expression T ∈ L given by number of nodes.

I consider the ordinary generating function L(z) =
∑

T∈L z
|T |

I coefficient [zn]L(z) counts tree expressions with n nodes.

=⇒ Specification translates into functional equation

LR = a+b+ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
⇒ L(z) = 3z+zL(z)+2z(L(z))2 .

More generally, for combinatorial expressions

L(z) = z · φ(L(z)) , φ(z) :=

∞∑
i=0

|Ai| zi .

Combinatorial expressions and Analytic Combinatorics

Expressions naturally adapted to Analytic Combinatorics

I size |T | of tree expression T ∈ L given by number of nodes.

I consider the ordinary generating function L(z) =
∑

T∈L z
|T |

I coefficient [zn]L(z) counts tree expressions with n nodes.

=⇒ Specification translates into functional equation

LR = a+b+ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
⇒ L(z) = 3z+zL(z)+2z(L(z))2 .

More generally, for combinatorial expressions

L(z) = z · φ(L(z)) , φ(z) :=

∞∑
i=0

|Ai| zi .

Absorbing patterns: simplifying the trees

LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
.

I Representation of languages not minimal.

I Perform simple reductions on trees

• Let P :=

?
|
+
/ \
a b

, representing language of all words.

• Make the (quite simple) reductions

+
/ \
P ·
 P

+
/ \
· P
 P

This is an absorbing pattern, element P reduces the operator +.

Absorbing patterns: simplifying the trees

LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
.

I Representation of languages not minimal.

I Perform simple reductions on trees

• Let P :=

?
|
+
/ \
a b

, representing language of all words.

• Make the (quite simple) reductions

+
/ \
P ·
 P

+
/ \
· P
 P

This is an absorbing pattern, element P reduces the operator +.

Absorbing patterns: simplifying the trees

LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
.

I Representation of languages not minimal.

I Perform simple reductions on trees

• Let P :=

?
|
+
/ \
a b

, representing language of all words.

• Make the (quite simple) reductions

+
/ \
P ·
 P

+
/ \
· P
 P

This is an absorbing pattern, element P reduces the operator +.

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Let L be the family of combinatorial expressions over A = (Ai),
consider

I an “operation” ~ ∈ Aa with arity a ≥ 2,

I an expression tree P ∈ L.

We simplify by applying bottom-up the rule:
~

C1 . . .Ca

 P , whenever Ci = P for some i ∈ {1, . . . , a}.

⇒ We are interested in the size of the trees after simplification.

Denote by σ(T) = σ(T,P,~) the simplification of T ∈ L.

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Let L be the family of combinatorial expressions over A = (Ai),
consider

I an “operation” ~ ∈ Aa with arity a ≥ 2,

I an expression tree P ∈ L.

We simplify by applying bottom-up the rule:
~

C1 . . .Ca

 P , whenever Ci = P for some i ∈ {1, . . . , a}.

⇒ We are interested in the size of the trees after simplification.

Denote by σ(T) = σ(T,P,~) the simplification of T ∈ L.

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Let L be the family of combinatorial expressions over A = (Ai),
consider

I an “operation” ~ ∈ Aa with arity a ≥ 2,

I an expression tree P ∈ L.

We simplify by applying bottom-up the rule:
~

C1 . . .Ca

 P , whenever Ci = P for some i ∈ {1, . . . , a}.

⇒ We are interested in the size of the trees after simplification.

Denote by σ(T) = σ(T,P,~) the simplification of T ∈ L.

Absorbing patters: simplifying the trees

Definition (Simplification, absorbing pattern)

Let L be the family of combinatorial expressions over A = (Ai),
consider

I an “operation” ~ ∈ Aa with arity a ≥ 2,

I an expression tree P ∈ L.

We simplify by applying bottom-up the rule:
~

C1 . . .Ca

 P , whenever Ci = P for some i ∈ {1, . . . , a}.

⇒ We are interested in the size of the trees after simplification.

Denote by σ(T) = σ(T,P,~) the simplification of T ∈ L.

Model for random trees
In our work we
I draw an expression tree of size n uniformly at random.
I study expected values and moments of

sizes of reduced expressions as n→∞.

0 5k 10k 15k 20k 25k 30k
0

5k

10k

15k

20k

25k

30k

size of the regular expression

si
ze

of
th

e
si

m
p

li
fi

ed
ex

p
re

ss
io

n

The average size seemingly tends linearly to infinity... yet it does not!

Model for random trees
In our work we
I draw an expression tree of size n uniformly at random.
I study expected values and moments of

sizes of reduced expressions as n→∞.

0 5k 10k 15k 20k 25k 30k
0

5k

10k

15k

20k

25k

30k

size of the regular expression

si
ze

of
th

e
si

m
p

li
fi

ed
ex

p
re

ss
io

n

The average size seemingly tends linearly to infinity...

yet it does not!

Model for random trees
In our work we
I draw an expression tree of size n uniformly at random.
I study expected values and moments of

sizes of reduced expressions as n→∞.

0 5k 10k 15k 20k 25k 30k
0

5k

10k

15k

20k

25k

30k

size of the regular expression

si
ze

of
th

e
si

m
p

li
fi

ed
ex

p
re

ss
io

n

The average size seemingly tends linearly to infinity... yet it does not!

Main result

Theorem (Informal version)

Consider a simple variety of expressions with an absorbing pattern
P for one of the operators ~.

Take the simplification consisting in inductively changing a ~-node
by P whenever one of its children simplifies to P.

Then the expected size of the simplification of a uniform random
expression of size n tends to a constant δ as n tends to infinity.

Example

For the regular expressions LR on {a, b},
δ ≈ 3 624 217 .

Main result

Theorem (Informal version)

Consider a simple variety of expressions with an absorbing pattern
P for one of the operators ~.

Take the simplification consisting in inductively changing a ~-node
by P whenever one of its children simplifies to P.

Then the expected size of the simplification of a uniform random
expression of size n tends to a constant δ as n tends to infinity.

Example

For the regular expressions LR on {a, b},
δ ≈ 3 624 217 .

Main result

Theorem

Let L = L(A) a set of combinatorial expressions whose GF L(z)
belongs to the smooth inverse-function schema L(z) = z · φ(L(z)),
with φ aperiodic. Let P ∈ L and let ~ be an operator of arity ≥ 2.

These hypotheses apply to a wide variety of expression families:

∨

xi ¬xi

For logical formulas (operator ∨).

?

+

a b

For regular expressions (operator +).

x 7→ 0

For functions (operator ·).

Main result

Theorem

Let L = L(A) a set of combinatorial expressions whose GF L(z)
belongs to the smooth inverse-function schema L(z) = z · φ(L(z)),
with φ aperiodic. Let P ∈ L and let ~ be an operator of arity ≥ 2.

These hypotheses apply to a wide variety of expression families:

∨

xi ¬xi

For logical formulas (operator ∨).

?

+

a b

For regular expressions (operator +).

x 7→ 0

For functions (operator ·).

Main result

Theorem

Let L = L(A) a set of combinatorial expressions whose GF L(z)
belongs to the smooth inverse-function schema L(z) = z · φ(L(z)),
with φ aperiodic. Let P ∈ L and let ~ be an operator of arity ≥ 2.

These hypotheses apply to a wide variety of expression families:

∨

xi ¬xi

For logical formulas (operator ∨).

?

+

a b

For regular expressions (operator +).

x 7→ 0

For functions (operator ·).

Then, if σ := s(T,P,~), where |T | = n is chosen uniformly at
random,

lim
n→∞

En[σ] = δ ,

for some 0 < δ <∞. Furthermore, for i ∈ Z≥1,

lim
n→∞

En[σi] = δi

for some positive δi.

Intuitions

Definition (Completely reducible expressions)

An expression tree T is completely reducible when s(T,P,~) = P.

+

+ *

* .

+

a b

b b

.

+ b

* a

a

Completely reducible expressions

I are not a rarity

lim
n→∞

Pn (T completely reducible) = C > 0 .

I dictate the reduction process:

leaves of the reduced expression.

I can also be specified recursively, e.g.,

R = P +
+
/ \
R L

+
+
/ \
L R

.

Intuitions

Definition (Completely reducible expressions)

An expression tree T is completely reducible when s(T,P,~) = P.

+

+ *

* .

+

a b

b b

.

+ b

* a

a

Completely reducible expressions

I are not a rarity

lim
n→∞

Pn (T completely reducible) = C > 0 .

I dictate the reduction process:

leaves of the reduced expression.

I can also be specified recursively, e.g.,

R = P +
+
/ \
R L

+
+
/ \
L R

.

Intuitions

Definition (Completely reducible expressions)

An expression tree T is completely reducible when s(T,P,~) = P.

+

+ *

* .

+

a b

b b

.

+ b

* a

a

Completely reducible expressions

I are not a rarity

lim
n→∞

Pn (T completely reducible) = C > 0 .

I dictate the reduction process:

leaves of the reduced expression.

I can also be specified recursively, e.g.,

R = P +
+
/ \
R L

+
+
/ \
L R

.

Intuitions

Definition (Completely reducible expressions)

An expression tree T is completely reducible when s(T,P,~) = P.

+

+ *

* .

+

a b

b b

.

+ b

* a

a

Completely reducible expressions

I are not a rarity

lim
n→∞

Pn (T completely reducible) = C > 0 .

I dictate the reduction process:

leaves of the reduced expression.

I can also be specified recursively, e.g.,

R = P +
+
/ \
R L

+
+
/ \
L R

.

Proof principles: symbolic steps
Proof based on principles of Analytic Combinatorics:

I bivariate generating functions

L(z, u) =
∑
T∈L

z|T |uσ(T) =⇒ En[σ] = [zn]∂uL(z,u)|u=1

[zn]L(z,u)|u=1
,

I need appropriate expression for L(z, u), e.g.,

LR = a+ b+ ε+R \ {P}+
+
/ \

LR\R LR\R
+

•
/ \

LR LR

+
?
|
LR

=⇒ functional equation for L(z, u) involving R(z, u).

Proof principles: symbolic steps
Proof based on principles of Analytic Combinatorics:

I bivariate generating functions

L(z, u) =
∑
T∈L

z|T |uσ(T) =⇒ En[σ] = [zn]∂uL(z,u)|u=1

[zn]L(z,u)|u=1
,

I need appropriate expression for L(z, u), e.g.,

LR = a+ b+ ε+R \ {P}+
+
/ \

LR\R LR\R
+

•
/ \

LR LR

+
?
|
LR

=⇒ functional equation for L(z, u) involving R(z, u).

Proof principles: symbolic steps
Proof based on principles of Analytic Combinatorics:

I bivariate generating functions

L(z, u) =
∑
T∈L

z|T |uσ(T) =⇒ En[σ] = [zn]∂uL(z,u)|u=1

[zn]L(z,u)|u=1
,

I need appropriate expression for L(z, u), e.g.,

LR = a+ b+ ε+R \ {P}+
+
/ \

LR\R LR\R
+

•
/ \

LR LR

+
?
|
LR

=⇒ functional equation for L(z, u) involving R(z, u).

Proof principles: analytic step

Theorem (Classical, see Flajolet&Sedgewick)

Let L be a set of combinatorial expressions whose GF L(z) belongs
to the smooth inverse-function schema L(z) = z · φ(L(z)).

Let τ > 0 be the solution of φ(τ)− τφ′(τ) = 0, and ρ := τ/φ(τ).

Then we have that L(z) = g(z)− h(z)
√
1− z/ρ around z = ρ.

Transfer Theorem

When φ is aperiodic, this implies [zn]L(z) ∼ CLρ−n/n3/2.

For expectations we make use of extensions by Drmota

I R(z), the GF of the completely reducible trees, [Multidim]

I ∂uL(z, u)|u=1, the numerator of the expectation, [Closure]

and then recall En[σ] = [zn]∂uL(z, u)|u=1/[z
n]L(z, u)|u=1.

Proof principles: analytic step

Theorem (Classical, see Flajolet&Sedgewick)

Let L be a set of combinatorial expressions whose GF L(z) belongs
to the smooth inverse-function schema L(z) = z · φ(L(z)).

Let τ > 0 be the solution of φ(τ)− τφ′(τ) = 0, and ρ := τ/φ(τ).

Then we have that L(z) = g(z)− h(z)
√
1− z/ρ around z = ρ.

Transfer Theorem

When φ is aperiodic, this implies [zn]L(z) ∼ CLρ−n/n3/2.

For expectations we make use of extensions by Drmota

I R(z), the GF of the completely reducible trees, [Multidim]

I ∂uL(z, u)|u=1, the numerator of the expectation, [Closure]

and then recall En[σ] = [zn]∂uL(z, u)|u=1/[z
n]L(z, u)|u=1.

Conclusions and further work

Conclusions

~ Uniform random expressions often are not a suitable model.

~ Algorithms with polynomial worst case
⇒ constant on average after simplification (linear).

~ The constant δ ≈ 3.6× 106 may seem humongous
⇒ adding simplification rules we reduce it to ≈ 75.

Questions and further work

1. Extend results to multidimensional systems of trees.

2. Experiments suggest that a similar situation holds for BSTs

3. Find suitable model!

Conclusions and further work

Conclusions

~ Uniform random expressions often are not a suitable model.

~ Algorithms with polynomial worst case
⇒ constant on average after simplification (linear).

~ The constant δ ≈ 3.6× 106 may seem humongous
⇒ adding simplification rules we reduce it to ≈ 75.

Questions and further work

1. Extend results to multidimensional systems of trees.

2. Experiments suggest that a similar situation holds for BSTs

3. Find suitable model!

Conclusions and further work

Conclusions

~ Uniform random expressions often are not a suitable model.

~ Algorithms with polynomial worst case
⇒ constant on average after simplification (linear).

~ The constant δ ≈ 3.6× 106 may seem humongous
⇒ adding simplification rules we reduce it to ≈ 75.

Questions and further work

1. Extend results to multidimensional systems of trees.

2. Experiments suggest that a similar situation holds for BSTs

3. Find suitable model!

Conclusions and further work

Conclusions

~ Uniform random expressions often are not a suitable model.

~ Algorithms with polynomial worst case
⇒ constant on average after simplification (linear).

~ The constant δ ≈ 3.6× 106 may seem humongous
⇒ adding simplification rules we reduce it to ≈ 75.

Questions and further work

1. Extend results to multidimensional systems of trees.

2. Experiments suggest that a similar situation holds for BSTs

3. Find suitable model!

Conclusions and further work

Conclusions

~ Uniform random expressions often are not a suitable model.

~ Algorithms with polynomial worst case
⇒ constant on average after simplification (linear).

~ The constant δ ≈ 3.6× 106 may seem humongous
⇒ adding simplification rules we reduce it to ≈ 75.

Questions and further work

1. Extend results to multidimensional systems of trees.

2. Experiments suggest that a similar situation holds for BSTs

3. Find suitable model!

Conclusions and further work

Conclusions

~ Uniform random expressions often are not a suitable model.

~ Algorithms with polynomial worst case
⇒ constant on average after simplification (linear).

~ The constant δ ≈ 3.6× 106 may seem humongous
⇒ adding simplification rules we reduce it to ≈ 75.

Questions and further work

1. Extend results to multidimensional systems of trees.

2. Experiments suggest that a similar situation holds for BSTs

3. Find suitable model!

Thank you!

	Expression trees
	Random expressions and results
	Toolbox
	Conclusions

