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Plan of the talk
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Introduction: context

Problem
Automatically test a program taking regular expressions as input

(a+b) b,  (b-(a+e), (a-a*)+(b+a).
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Introduction: random regular expressions

» Expression trees
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Introduction: random regular expressions

» Expression trees

/7 N\ * /7 N
—+ * ! ° *
’ \b ;) L /N Jlr
a a x
b ,Jr\ | N
a IS a b a
(a+0b)-b* (b-(a+e))* (a-a*)+ (b+a)*

> Generate a random expression tree

o Realistic distribution

e Simple implementation, possibility of theoretical analysis.
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Uniform random expression trees
Expression trees:
> trees defined inductively,

L=a+.. +ak+e+\+ N+ /\
LL [r

9

» size |T'| = number of nodes.
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Uniform random expression trees

Expression trees:

> trees defined inductively,

* ° +
£:a1+...+ak+5+£+ﬁ/\ﬁ+c/\l:

9

» size |T'| = number of nodes.

Idea: Fix target size n, pick tree T of size |T'| = n uniformly
» natural a priori choice,

> efficient sampling
(Boltzmann, Recursive, Devroye's constrainted GW),

» amenable to theoretical study (Analytic Combinatorics).

= Model used in numerous practical and theoretical works
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Warning signs: reduction by an absorbing pattern

Expected size after (linear) reduction is bounded O(1).

Uniform expression trees [Koechlin,Nicaud,R. 2020] J
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Warning signs: reduction by an absorbing pattern

Uniform expression trees [Koechlin,Nicaud,R. 2020]

Expected size after (linear) reduction is bounded O(1).

» Universal result: not only regular expressions,

» Absorbing patterns: only semantic hypothesis, absorbing pattern P,

® ®
/\ ~ P /\ ~P
P T T P

simplest case, false A (...) = false.

» Wide variety of examples:

*
. +

a b

operator V operator +

Y

I
xT; X

z+—0

operator X

What does this say about regular expressions? O(1) ?
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Regular expressions: reduction by absorbing pattern

Hidden constant O(1) : for regular expressions on two letters, the
limit size after reduction is 3 624 217.

average size after reduction

6

-10°

1 2 3 4 5

size of regular expression

-10°
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Regular expressions: reduction by absorbing pattern

Hidden constant O(1) : for regular expressions on two letters, the
limit size after reduction is 3 624 217.

-10°

6| E

average size after reduction

0 g L L L L
0 1 2 3 4 5 6 -10°

size of regular expression

Question. Are uniform regular expressions useful nonetheless?
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Reduction based on universality detection

x
. . .+. . . .
» Reduction from absorbing pattern  a” 7p misses fine semantics
operator +
Example: just avoid the pattern
. = {a,b}*.
* +
b a‘ .5
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» Reduction from absorbing pattern  a" b misses fine semantics
operator +
Example: just avoid the pattern
. = {a,b}*.
* +
b a‘ ) €

(b - (a+2)*

» We consider more specific algorithm based on universality detection
expression is universal < equivalent to X%,

= substitute universal subtrees by smallest universal tree U .
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Universality detection: propagation rules

Idea: substitute universal subtrees by smallest universal tree U/ .

» We define bottom-up propagation rules
] * *

+ + o
Inos U, s U, PN U, N s U Vs U, I U.
u L L U u Te Te U Ts u
» Examples for ¥ = {a, b},
{a,b, e} o Ul {a,be}x U
/7 N\ |
{a,be}* U *{a,e} {a,b,c} ®
1 | /7 N
{a,b}+ a {b,e} % + {a,e}
/ N | / N
a b b a €
(1) : (a+b)*-a* () : (v* - (a+2)*

» Detection is only partial: example ¥ ->* + ¢
= universality problem is PSPACE-complete !
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Results |

Rewriting rules:
+ —+ L] L] *

*
I U, s U, PN U, N s U Vv U, s U
u c LU u e Te U Ts u
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Results |

Rewriting rules:

+ + [ ] [ ] * *
I U, s U, PN U, N s U L~ U, L~ U
u LU u Te Te U Ts u
Main result
Consider the regular expression trees over ¥ = {ay,...,ax}.

Take the bottom-up simplification ¢ induced by our rewriting rules.

Then the of the simplification of a random uniform
tree tends to a constant as the size n tends to infinity.

Moreover, the constant can be computed efficiently

D] 2 3 4 5
WmE,[jo(T)]] | 77.79724... | 495.59151... | 2518.20513 ... | 11694.43727. ..

Note. Compare ~ 77.8 against previous ~ 3.6 x 10° for two letters.
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Results: plots

average size of the reduced expression

Il Il Il
93 26 29 912 915 918 921
size of the regular expression

0L I I I
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Results: plots

average size of the reduced expression

I
23 26 29 212 215 218 221

size of the regular expression

proportion of detected universal

I
215 218

size of the regular expression

I
20 29 212

5
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Results ||

Proposition

For n large enough, the proportion Pr,(univ.) of universal
expressions trees belongs to the intervals:

D] 2 3 4 5
interval | (0.31,0.46) | (0.13,0.27) | (0.062,0.15) | (0.028,0.077)
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Results ||

Proposition

For n large enough, the proportion Pr,(univ.) of universal
expressions trees belongs to the intervals:

D] 2 3 4 5
interval | (0.31,0.46) | (0.13,0.27) | (0.062,0.15) | (0.028,0.077)

» Preponderance of universal expression trees:
between 31% and 46% for two letters {a, b}

» Uniform model not adapted to sampling regular languages
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Scheme of the proof
We employ Analytic Combinatorics to study the expectation,

> Bivariate generating function
o n auL 3y U=
L(zu) = 30 a7 = B, lo(D)]) = et
TeL

encodes input and output sizes.
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Scheme of the proof
We employ Analytic Combinatorics to study the expectation,

> Bivariate generating function

Lz ) = 3wl DT = By [lo(T)]] = Gifubenlems
TeL

encodes input and output sizes.

» Symbolic Step. We find a formal equation describing L(z,u).

Here this is done from a combinatorial specificiation

y(z,u) = F(z,u;y(2,u)) .

» Analytic Step. A Transfer Theorem links the behaviour at
dominant singularities p € C to asymptotics of coefficients
L(2) ~vamsp AL = 2/p) " = ["]L(2) ~ An®" T ()p ™.

= Study asymptotics over z € C

13/20



Combinatorial specification: two letters ¥ = {a, b}

For every X C {a,b} introduce:

» Tx,. the set of trees recognizing every letter in X and ¢, and
no letter not in X

» Txz the set of trees recognizing every letter in X, and no
letter not in X, nor ¢
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For every X C {a,b} introduce:

» Tx,. the set of trees recognizing every letter in X and ¢, and
no letter not in X

» Txz the set of trees recognizing every letter in X, and no
letter not in X, nor ¢

[ A
Tx.e=¢elx—p+ Tee Te T Z Ts.e Ter
(5,5"):5U8"=X

+ + +
+ Z Ts 5/>—S/ + Z Ts s/é—s/ - + Z Ts,g/é’s/,s

(8,8):SUS'=Xx © o (8,8):SUS'=X (SS’):SUS’:X

7-X57X1|X| 1+Z7’X€TSE+ZTS!\X’5+1X 0 Z TSETS,g
scx

S,8'C%
/\
T Z Tsz Tsr g
(S,57):SUS' =X
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Example: combinatorial specification

Trees recognizing the letter a and no other letter, and not recognizing ¢

p— L]
7T{a}7§ = a+ VRN +
T{a},E %,E +,T{a.},s T(ZJ,E +T{a},e T{a},?
TTey.e + Tlab} e FTioy,e + THab) e
+ +
+ 7/ N + VRS

Tz Tia}= Tiaye Toz+ T{ar =
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Fully reducible trees: a base case for output size

Definition (Fully reducible expressions)
A regular expression tree T is fully reducible when o(T") = U.

In other words, it is recognized as universal by our algorithm.
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Fully reducible trees: a base case for output size

Definition (Fully reducible expressions)
A regular expression tree T is fully reducible when o(T) = U.

In other words, it is recognized as universal by our algorithm.

» Dictate the reduction process: leaves of reduced expression.

» Size after reduction p = |U| for T € R.

P> The class of fully reducible trees R satisfies the equation:

* * [}

+ + o
= | \ \ /\ N
R s, * a+7z/\z:+c\4z7z+727;+7;\7€72

— completes the combinatorial specification of L(z,u).
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Solving efficiently: auxiliary classes

> every tree: L=y Tx:UTxz
* ° =+
L=a+b+e+ |+ /N + N
L LL LL
L(z) =32+ zL(2) + 2Z(L(z))2
> trees recognizing ¢ : To = Uy Tx e

+

7}—5+|+ A + /\ + A .
T T.L O\ T
2+ 2zL(2)

G = 129,100

> trees not recognizing ¢ : Tx(z) = L(z) — T.(2)
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The system becomes triangular

T{(LJ,}@(Z) = function(T{(L,b}?E(z), and everyone above)

» Each equation is of degree 2 = exactly solvable

Tan2(2) = £ (-V/A @) +2/(22+2) VAG) - 622 +2— /(22 +2) VAE) +1022 42—z~ 1),
where A(z) is the determinant of the equation for L(z).
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Analytic step: square-root singularity

The expression

Tpan () = & (—VAGE) +2/ (22 +2) VAR - 622 +2— /(22 +2) VAR + 1022 +2 -2 1),

implies a square-root behaviour

T{ab} ~A— B\/l—Z

for z close to dominant singularity p.
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Analytic step: square-root singularity

The expression

Tpan () = & (—VAGE) +2/ (22 +2) VAR - 622 +2— /(22 +2) VAR + 1022 +2 -2 1),

implies a square-root behaviour

T{ab} ~A— B\/l—Z

for z close to dominant singularity p.

More generally
» square-root behaviour generalizes to T'x . and T'x z,
and for every k = |3| = use Drmota’s Theorem.
» then to 9, L(z,u)|y=1, numerator of the expectation. | ]

» Coefficients A and B determine asymptotics | ]
= we show how to compute these efficiently.
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Conclusion and further work

» \We have shown a simple linear algorithm, reducing uniform
regular expressions to small constant size.

» Therefore, uniform random regular expression trees tend to
describe very limited languages.
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Conclusion and further work

» \We have shown a simple linear algorithm, reducing uniform
regular expressions to small constant size.

» Therefore, uniform random regular expression trees tend to
describe very limited languages.

Future work
» Other distributions seem more appropriate (BST, ...)

» Algorithm (partially) detects universality, improvements ?

Thank you!
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