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Plan of the talk

1. Introduction: regular expression trees, uniform distribution

2. Semantic reductions: absorbing patterns, universality

3. Main results: expected size, proportion of universals

4. Techniques for the proof

5. Conclusions and further work
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Introduction: context

Problem

Automatically test a program taking regular expressions as input

(a+ b) · b? , (b · (a+ ε))? , (a · a?) + (b+ a)? .

Example: automata constructions
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Introduction: random regular expressions

I Expression trees
•

+ ?

ba b

(a+ b) · b?

?

•

b +

a ε

(b · (a+ ε))?

+

?•

+?

a

a

ab

(a · a?) + (b+ a)?

I Generate a random expression tree

• Realistic distribution

• Simple implementation, possibility of theoretical analysis.
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Uniform random expression trees

Expression trees:

I trees defined inductively,

L = a1 + . . .+ ak + ε+
?
|
L

+
•
/\
L L

+
+
/\
L L

,

I size |T | = number of nodes.

Idea: Fix target size n, pick tree T of size |T | = n uniformly

I natural a priori choice,

I efficient sampling
(Boltzmann, Recursive, Devroye’s constrainted GW),

I amenable to theoretical study (Analytic Combinatorics).

=⇒ Model used in numerous practical and theoretical works
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Warning signs: reduction by an absorbing pattern

Uniform expression trees [Koechlin,Nicaud,R. 2020]

Expected size after (linear) reduction is bounded O(1).

I Universal result: not only regular expressions,

I Absorbing patterns: only semantic hypothesis, absorbing pattern P,

~
/ \
P T

 P
~
/ \

T P
 P

simplest case, false ∧ (. . .) ≡ false.

I Wide variety of examples:

∨
xi ¬xi

operator ∨

?

+
a b

operator +

x 7→ 0

operator ×

What does this say about regular expressions? O(1) ?
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Regular expressions: reduction by absorbing pattern
Hidden constant O(1) : for regular expressions on two letters, the

limit size after reduction is 3 624 217.
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Question. Are uniform regular expressions useful nonetheless?
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Reduction based on universality detection

I Reduction from absorbing pattern

?

+
a b

operator +
misses fine semantics

Example: just avoid the pattern

?

•
? +

a εb

≡ {a, b}? .

(b? · (a+ ε))?

I We consider more specific algorithm based on universality detection

expression is universal⇔ equivalent to Σ? ,

⇒ substitute universal subtrees by smallest universal tree U .

8 / 20



Reduction based on universality detection

I Reduction from absorbing pattern

?

+
a b

operator +
misses fine semantics

Example: just avoid the pattern

?

•
? +

a εb

≡ {a, b}? .

(b? · (a+ ε))?

I We consider more specific algorithm based on universality detection

expression is universal⇔ equivalent to Σ? ,

⇒ substitute universal subtrees by smallest universal tree U .

8 / 20



Reduction based on universality detection

I Reduction from absorbing pattern

?

+
a b

operator +
misses fine semantics

Example: just avoid the pattern

?

•
? +

a εb

≡ {a, b}? .

(b? · (a+ ε))?

I We consider more specific algorithm based on universality detection

expression is universal⇔ equivalent to Σ? ,

⇒ substitute universal subtrees by smallest universal tree U .

8 / 20



Reduction based on universality detection

I Reduction from absorbing pattern

?

+
a b

operator +
misses fine semantics

Example: just avoid the pattern

?

•
? +

a εb

≡ {a, b}? .

(b? · (a+ ε))?

I We consider more specific algorithm based on universality detection

expression is universal⇔ equivalent to Σ? ,

⇒ substitute universal subtrees by smallest universal tree U .

8 / 20



Universality detection: propagation rules

Idea: substitute universal subtrees by smallest universal tree U .

I We define bottom-up propagation rules

+

U L
 U ,

+

L U
 U ,

•

U Tε
 U ,

•

Tε U
 U ,

?

TΣ
 U ,

?

U
 U .

I Examples for Σ = {a, b},

U{a, b, ε}•

?{a, b, ε} U ? {a, ε}

+{a, b} a

a b

(I) : (a+ b)? · a?

U{a, b, ε}?

{a, b, ε} •

?{b, ε} + {a, ε}

a εb

(II) : (b? · (a+ ε))?

I Detection is only partial: example Σ · Σ? + ε

=⇒ universality problem is PSPACE-complete !
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Results I

Rewriting rules:

+

U L
 U ,

+

L U
 U ,

•

U Tε
 U ,

•

Tε U
 U ,

?

TΣ
 U ,

?

U
 U .

Main result

Consider the regular expression trees over Σ = {a1, . . . , ak}.
Take the bottom-up simplification σ induced by our rewriting rules.

Then the expected size of the simplification of a random uniform
tree tends to a constant as the size n tends to infinity.

Moreover, the constant can be computed efficiently
|Σ| 2 3 4 5

limEn[|σ(T )|] 77.79724 . . . 495.59151 . . . 2 518.20513 . . . 11 694.43727 . . .

Note. Compare ∼ 77.8 against previous ∼ 3.6× 106 for two letters.
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Results: plots
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Results II

Proposition

For n large enough, the proportion Prn(univ.) of universal
expressions trees belongs to the intervals:

|Σ| 2 3 4 5

interval (0.31, 0.46) (0.13, 0.27) (0.062, 0.15) (0.028, 0.077)

I Preponderance of universal expression trees:
between 31% and 46% for two letters {a, b}

I Uniform model not adapted to sampling regular languages

12 / 20
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Scheme of the proof
We employ Analytic Combinatorics to study the expectation,

I Bivariate generating function

L(z, u) :=
∑
T∈L

u|σ(T )|z|T | =⇒ En[|σ(T )|] = [zn]∂uL(z,u)|u=1

[zn]L(z,u)|u=1
,

encodes input and output sizes.

I Symbolic Step. We find a formal equation describing L(z, u).

Here this is done from a combinatorial specificiation

y(z, u) = F (z, u;y(z, u)) .

I Analytic Step. A Transfer Theorem links the behaviour at
dominant singularities ρ ∈ C to asymptotics of coefficients

L(z) ∼z→ρ λ(1− z/ρ)−α =⇒ [zn]L(z) ∼ λnα−1/Γ(α)ρ−n .

⇒ Study asymptotics over z ∈ C
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Combinatorial specification: two letters Σ = {a, b}
For every X ⊆ {a, b} introduce:

I TX,ε the set of trees recognizing every letter in X and ε, and
no letter not in X

I TX,ε the set of trees recognizing every letter in X, and no
letter not in X, nor ε

TX,ε = ε1X=∅ +
?
|
TX,ε

+
?
|
TX,ε

+
∑

(S,S′):S∪S′=X

•
/\

TS,ε TS′,ε

+
∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
+

∑
(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
+

∑
(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
,

TX,ε = X1|X|=1 +
∑
S⊆Σ

•
/\

TX,ε TS,ε
+
∑
S⊆Σ

•
/\

TS,ε TX,ε
+ 1X=∅

∑
S,S′⊆Σ

•
/\

TS,ε TS′,ε

+
∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
,
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letter not in X, nor ε

TX,ε = ε1X=∅ +
?
|
TX,ε

+
?
|
TX,ε

+
∑

(S,S′):S∪S′=X

•
/\

TS,ε TS′,ε

+
∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
+

∑
(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
+

∑
(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
,

TX,ε = X1|X|=1 +
∑
S⊆Σ

•
/\

TX,ε TS,ε
+
∑
S⊆Σ

•
/\

TS,ε TX,ε
+ 1X=∅

∑
S,S′⊆Σ

•
/\

TS,ε TS′,ε

+
∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
,
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Example: combinatorial specification

Trees recognizing the letter a and no other letter, and not recognizing ε

T{a},ε = a+ •

T{a},ε T∅,ε + T{a},ε
+T{b},ε + T{a,b},ε

+ •

T∅,ε + T{a},ε
+T{b},ε + T{a,b},ε

T{a},ε

+ +

T∅,ε T{a},ε

+ +

T{a},ε T∅,ε + T{a},ε
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Fully reducible trees: a base case for output size

Definition (Fully reducible expressions)

A regular expression tree T is fully reducible when σ(T ) = U .

In other words, it is recognized as universal by our algorithm.

I Dictate the reduction process: leaves of reduced expression.

I Size after reduction p = |U| for T ∈ R.

I The class of fully reducible trees R satisfies the equation:

R =
?
|
TΣ,ε

+
?
|
TΣ,ε

+
+
/\
R L

+
+
/\

L\R R
+

•
/\
R Tε

+
•
/\

Tε\R R
.

=⇒ completes the combinatorial specification of L(z, u).
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Solving efficiently: auxiliary classes

I every tree : L =
⋃
X TX,ε ∪ TX,ε

L = a+ b+ ε+
?
|
L

+
•
/\
L L

+
+
/\
L L

L(z) = 3z + zL(z) + 2z(L(z))2

I trees recognizing ε : Tε =
⋃
X TX,ε

Tε = ε+
?
|
L

+
•
/\
Tε Tε

+
+
/\
Tε L

+
+
/\

L\Tε Tε
.

Tε(z) =
z + zL(z)

1− 2zL(z)

I trees not recognizing ε : Tε(z) = L(z)− Tε(z)
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The system becomes triangular

T∅,ε(z) = function(T∅,ε(z))

T{a},ε(z) = function(T{a},ε(z), T∅,ε(z))

T{b},ε(z) = function(T{b},ε(z), T∅,ε(z))

T{a,b},ε(z) = function(T{a,b},ε(z), T{a},ε(z), T{b},ε(z), T∅,ε(z))

T∅,ε(z) = function(T∅,ε(z), T∅,ε(z))

...

T{a,b},ε(z) = function(T{a,b},ε(z), and everyone above)

I Each equation is of degree 2 ⇒ exactly solvable

T{a,b},ε(z) = 1
4z

(
−
√

∆(z) + 2
√

(2z + 2)
√

∆(z)− 6z2 + 2−
√

(2z + 2)
√

∆(z) + 10z2 + 2− z − 1
)
,

where ∆(z) is the determinant of the equation for L(z).
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Analytic step: square-root singularity

The expression

T{a,b},ε(z) = 1
4z

(
−
√

∆(z) + 2
√

(2z + 2)
√

∆(z)− 6z2 + 2−
√

(2z + 2)
√

∆(z) + 10z2 + 2− z − 1
)
,

implies a square-root behaviour

T{a,b},ε(z) ∼ A−B
√

1− z/ρ

for z close to dominant singularity ρ.

More generally

I square-root behaviour generalizes to TX,ε and TX,ε,

and for every k = |Σ| ⇒ use Drmota’s Theorem.

I then to ∂uL(z, u)|u=1, numerator of the expectation. [Closure]

I Coefficients A and B determine asymptotics [Transfer Theorem]
=⇒ we show how to compute these efficiently.
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Conclusion and further work

I We have shown a simple linear algorithm, reducing uniform
regular expressions to small constant size.

I Therefore, uniform random regular expression trees tend to
describe very limited languages.

Future work

I Other distributions seem more appropriate (BST, ...)

I Algorithm (partially) detects universality, improvements ?

Thank you!
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