Analysis of an efficient reduction algorithm for random regular expressions based on universality detection

Pablo Rotondo

LIGM, Université Gustave Eiffel

Joint work with Florent Koechlin

CSR 2021, 30 June, 2021.

Plan of the talk

1. Introduction: regular expression trees, uniform distribution

- 2. Semantic reductions: absorbing patterns, universality
- 3. Main results: expected size, proportion of universals
- 4. Techniques for the proof
- 5. Conclusions and further work

Introduction: context

Problem

Automatically test a program taking regular expressions as input

$$(a+b) \cdot b^{\star}$$
, $(b \cdot (a+\varepsilon))^{\star}$, $(a \cdot a^{\star}) + (b+a)^{\star}$.

Introduction: context

Problem

Automatically test a program taking regular expressions as input

$$(a+b) \cdot b^{\star}, \qquad (b \cdot (a+\varepsilon))^{\star}, \qquad (a \cdot a^{\star}) + (b+a)^{\star}.$$

Example: automata constructions

h

b2

Introduction: random regular expressions

Introduction: random regular expressions

Generate a random expression tree

- Realistic distribution
- Simple implementation, possibility of theoretical analysis.

Expression trees:

trees defined inductively,

$$\mathcal{L} = a_1 + \ldots + a_k + \varepsilon + \overset{\star}{\underset{\mathcal{L}}{\vdash}} + \overset{\bullet}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}},$$

• size |T| = number of nodes.

Expression trees:

trees defined inductively,

$$\mathcal{L} = a_1 + \ldots + a_k + \varepsilon + \overset{\star}{\underset{\mathcal{L}}{\vdash}} + \overset{\bullet}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}},$$

• size
$$|T| =$$
 number of nodes.

Idea: Fix target size n,

Expression trees:

trees defined inductively,

$$\mathcal{L} = a_1 + \ldots + a_k + \varepsilon + \overset{\star}{\underset{\mathcal{L}}{\vdash}} + \overset{\bullet}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}},$$

• size |T| = number of nodes.

Idea: Fix target size n, pick tree T of size |T| = n uniformly

Expression trees:

trees defined inductively,

$$\mathcal{L} = a_1 + \ldots + a_k + \varepsilon + \overset{\star}{\underset{\mathcal{L}}{\vdash}} + \overset{\bullet}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}},$$

• size
$$|T| =$$
 number of nodes.

Idea: Fix target size n, pick tree T of size |T| = n uniformly

natural a priori choice,

Expression trees:

trees defined inductively,

$$\mathcal{L} = a_1 + \ldots + a_k + \varepsilon + \overset{\star}{\underset{\mathcal{L}}{\vdash}} + \overset{\bullet}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}},$$

• size
$$|T| =$$
 number of nodes.

Idea: Fix target size n, pick tree T of size |T| = n uniformly

natural a priori choice,

 efficient sampling (Boltzmann, Recursive, Devroye's constrainted GW),

Expression trees:

trees defined inductively,

$$\mathcal{L} = a_1 + \ldots + a_k + \varepsilon + \overset{\star}{\underset{\mathcal{L}}{\vdash}} + \overset{\bullet}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}},$$

• size
$$|T| =$$
 number of nodes.

Idea: Fix target size n, pick tree T of size |T| = n uniformly

- natural a priori choice,
- efficient sampling

(Boltzmann, Recursive, Devroye's constrainted GW),

amenable to theoretical study (Analytic Combinatorics).

Expression trees:

trees defined inductively,

$$\mathcal{L} = a_1 + \ldots + a_k + \varepsilon + \overset{\star}{\underset{\mathcal{L}}{\vdash}} + \overset{\bullet}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}} + \overset{+}{\underset{\mathcal{L}}{\wedge}},$$

• size
$$|T| =$$
 number of nodes.

Idea: Fix target size n, pick tree T of size |T| = n uniformly

- natural a priori choice,
- efficient sampling

(Boltzmann, Recursive, Devroye's constrainted GW),

amenable to theoretical study (Analytic Combinatorics).

 \Longrightarrow Model used in numerous practical and theoretical works

Uniform expression trees [Koechlin,Nicaud,R. 2020]

Expected size after (linear) reduction is bounded O(1).

Uniform expression trees [Koechlin,Nicaud,R. 2020] Expected size after (linear) reduction is bounded O(1).

Universal result: not only regular expressions,

Uniform expression trees [Koechlin,Nicaud,R. 2020] Expected size after (linear) reduction is bounded O(1).

- Universal result: not only regular expressions,
- Absorbing patterns: only semantic hypothesis, absorbing pattern \mathcal{P} ,

Uniform expression trees [Koechlin,Nicaud,R. 2020] Expected size after (linear) reduction is bounded O(1).

- Universal result: not only regular expressions,
- Absorbing patterns: only semantic hypothesis, absorbing pattern \mathcal{P} ,

simplest case, false \land (...) \equiv false.

Uniform expression trees [Koechlin,Nicaud,R. 2020] Expected size after (linear) reduction is bounded O(1).

- Universal result: not only regular expressions,
- Absorbing patterns: only semantic hypothesis, absorbing pattern \mathcal{P} ,

$$\overset{\circledast}{\underset{\mathcal{P}}{\overset{}}_{T}} \rightsquigarrow \mathcal{P} \qquad \overset{\circledast}{\underset{T}{\overset{}}_{\mathcal{P}}} \rightsquigarrow \mathcal{P}$$

simplest case, $false \land (...) \equiv false$.

Wide variety of examples:

Uniform expression trees [Koechlin,Nicaud,R. 2020] Expected size after (linear) reduction is bounded O(1).

- Universal result: not only regular expressions,
- Absorbing patterns: only semantic hypothesis, absorbing pattern \mathcal{P} ,

$$\overset{\circledast}{\underset{\mathcal{P}}{\overset{}}_{T}} \rightsquigarrow \mathcal{P} \qquad \overset{\circledast}{\underset{T}{\overset{}}_{\mathcal{P}}} \rightsquigarrow \mathcal{P}$$

simplest case, $false \land (...) \equiv false$.

Wide variety of examples:

What does this say about regular expressions? O(1) ?

Regular expressions: reduction by absorbing pattern

Hidden constant O(1): for regular expressions on two letters, the limit size after reduction is 3 624 217.

Regular expressions: reduction by absorbing pattern

Hidden constant O(1): for regular expressions on two letters, the limit size after reduction is 3 624 217.

Question. Are uniform regular expressions useful nonetheless?

▶ We consider more specific algorithm based on *universality detection*

expression is universal \Leftrightarrow equivalent to Σ^{\star} ,

▶ We consider more specific algorithm based on *universality detection* expression is universal \Leftrightarrow equivalent to Σ^{\star} ,

 \Rightarrow substitute universal subtrees by smallest universal tree ${\cal U}$.

Idea: substitute universal subtrees by smallest universal tree $\ensuremath{\mathcal{U}}$.

Idea: substitute universal subtrees by smallest universal tree ${\mathcal U}$.

▶ We define bottom-up propagation rules

$$\overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{\to}{\underset{\mathcal{L}}{\overset{}}} \overset{U}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{\to}{\underset{\mathcal{U}}{\overset{}}} \overset{U}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{}}} \overset{\to}{\underset{\mathcal{U}}{\overset{}}} \overset{U}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\overset{\bullet}}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\overset{\bullet}}{\underset{\mathcal{U}}} \overset{\overset}{\overset}{\overset}{\overset}{\overset}{\overset}{\overset}}{\overset}{\overset}{\overset}{\overset}{\overset$$

Idea: substitute universal subtrees by smallest universal tree ${\mathcal U}$.

▶ We define bottom-up propagation rules

$$\overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{\to}{\underset{\mathcal{L}}{\overset{}}} \overset{U}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\overset{\bullet}}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\overset{\bullet}}{\underset{\mathcal{U}}} \overset{\bullet}{\overset{\bullet}}} \overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}} \overset{\bullet}{\overset{$$

• Examples for $\Sigma = \{a, b\}$,

$$\{a, b, \varepsilon\} \bullet \mathcal{U}$$

$$\{a, b, \varepsilon\} \star \mathcal{U} \qquad \mathbf{1}$$

$$\{a, b, \varepsilon\} + \mathcal{U} \qquad \mathbf{1}$$

$$\{a, b\} + \qquad a$$

$$a \qquad b$$

$$(\mathbf{I}) : (a + b)^{\star} \cdot a^{\star}$$

Idea: substitute universal subtrees by smallest universal tree ${\mathcal U}$.

▶ We define bottom-up propagation rules

$$\overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{L}}{\overset{}}} \overset{}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\overset}{\overset}}} \overset{\bullet}{\overset}{\overset{\bullet}}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\overset}}{\underset{\mathcal{U}}} \overset{\bullet}{\overset}}{\overset{\bullet}}{\overset{\bullet}}} \overset{\bullet}{\overset}{\overset}}$$

▶ Examples for $\Sigma = \{a, b\}$,

Idea: substitute universal subtrees by smallest universal tree ${\mathcal U}$.

▶ We define bottom-up propagation rules

$$\overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{L}}{\overset{}}} \overset{}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\overset}{\overset{\bullet}}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}}{\overset{\overset}{\overset}{\overset}}{\overset}{\overset}}} \overset{\overset}{\overset}{\overset}{\overset$$

► Examples for $\Sigma = \{a, b\}$,

$$\begin{array}{c} \{a,b,\varepsilon\} \bullet \mathcal{U} \\ \{a,b,\varepsilon\} \star \mathcal{U} \\ \{a,b,\varepsilon\} \star \mathcal{U} \\ a,b,\varepsilon\} \star \mathcal{U} \\ b,\varepsilon\} \star \mathcal{U} \\ c,c,\varepsilon\} \star \mathcal{U} \\ c$$

▶ Detection is only partial: example $\Sigma \cdot \Sigma^{\star} + \varepsilon$

Idea: substitute universal subtrees by smallest universal tree $\ensuremath{\mathcal{U}}$.

▶ We define bottom-up propagation rules

$$\overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{\to}{\underset{\mathcal{L}}{\overset{}}} \overset{U}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{\to}{\underset{\mathcal{U}}{\overset{}}} \overset{U}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{}}} \overset{\to}{\underset{\mathcal{U}}{\overset{}}} \overset{U}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}{\overset{\bullet}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\overset{\bullet}}{\underset{\mathcal{U}}} \overset{\bullet}{\underset{\mathcal{U}}} \overset{\bullet}{\overset{\bullet}}{\underset{\mathcal{U}}} \overset{\overset}{\overset}{\overset}{\overset}{\overset}{\overset}{\overset}}{\overset}{\overset}{\overset}{\overset}{\overset$$

► Examples for $\Sigma = \{a, b\}$,

$$\begin{array}{c} \{a,b,\varepsilon\} \bullet \mathcal{U} \\ \{a,b,\varepsilon\} \star \mathcal{U} \\ \{a,b,\varepsilon\} \star \mathcal{U} \\ a,b,\varepsilon\} \star \mathcal{U} \\ b,c\} \star \mathcal{U} \\ c,c\} \\ c,$$

► Detection is only partial: example Σ · Σ* + ε ⇒ universality problem is PSPACE-complete !

Rewriting rules:

$$\overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{L}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{-}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}} \overset{+}{\underset{\mathcal{U}}} \overset{+}}{\overset{}}} \overset{}}{\overset{}}{\overset{}}{\overset{}}} \overset{}}{\overset{}}}{\overset{}}} \overset{}}{\overset{}}{\overset{$$

Rewriting rules:

$$\overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{L}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{-}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{-}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{-}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\overset{}}{\overset{}}}{\overset{}}} \overset{}}{\overset{}}} \overset{}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}{\overset{}$$

Main result

Consider the regular expression trees over $\Sigma = \{a_1, \ldots, a_k\}$. Take the bottom-up simplification σ induced by our rewriting rules.

Rewriting rules:

$$\overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{L}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{-}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{-}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{-}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}} \overset{}}{\overset{}} \overset{}}{\overset{}}}{\overset{}}} \overset{}}{\overset{}}} \overset{}}{\overset{}}{\overset{}}{\overset{}}$$

Main result

Consider the regular expression trees over $\Sigma = \{a_1, \ldots, a_k\}$. Take the bottom-up simplification σ induced by our rewriting rules.

Then the expected size of the simplification of a random uniform tree tends to a **constant** as the size n tends to infinity.

Moreover, the constant can be computed efficiently

$ \Sigma $	2	3	4	5
$\lim \mathbb{E}_n[\sigma(T)]$	77.79724	495.59151	$2518.20513\ldots$	$11694.43727\ldots$

Rewriting rules:

$$\overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{L}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{-}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{-}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{-}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}}} \overset{+}{\underset{\mathcal{U}}{\overset{}}} \overset{+}{\underset{\mathcal{U}}} \overset{+}{\underset{\mathcal{U}}} \overset{+}}{\overset{}}} \overset{}}{\overset{}}{\overset{}}{\overset{}}} \overset{}}{\overset{}}}{\overset{}}} \overset{}}{\overset{}}{\overset{$$

Main result

Consider the regular expression trees over $\Sigma = \{a_1, \ldots, a_k\}$. Take the bottom-up simplification σ induced by our rewriting rules.

Then the expected size of the simplification of a random uniform tree tends to a **constant** as the size n tends to infinity.

Moreover, the constant can be computed efficiently

$ \Sigma $	2	3	4	5
$\lim \mathbb{E}_n[\sigma(T)]$	77.79724	495.59151	$2518.20513\ldots$	$11694.43727\ldots$

Note. Compare ~ 77.8 against previous $\sim 3.6 \times 10^6$ for two letters.

Results: plots

Results: plots

Proposition

For n large enough, the proportion $Pr_n(univ.)$ of universal expressions trees belongs to the intervals:

$ \Sigma $	2	3	4	5
interval	(0.31, 0.46)	(0.13, 0.27)	(0.062, 0.15)	(0.028, 0.077)

Proposition

For n large enough, the proportion $Pr_n(univ.)$ of universal expressions trees belongs to the intervals:

$ \Sigma $	2	3	4	5
interval	(0.31, 0.46)	(0.13, 0.27)	(0.062, 0.15)	(0.028, 0.077)

- Preponderance of universal expression trees: between 31% and 46% for two letters {a, b}
- Uniform model not adapted to sampling regular languages

We employ Analytic Combinatorics to study the expectation,

Bivariate generating function

$$L(z,u) := \sum_{T \in \mathcal{L}} u^{|\sigma(T)|} z^{|T|} \implies \mathbb{E}_n[|\sigma(T)|] = \frac{[z^n]\partial_u L(z,u)|_{u=1}}{[z^n]L(z,u)|_{u=1}},$$

encodes input and output sizes.

We employ Analytic Combinatorics to study the expectation,

Bivariate generating function

$$L(z,u) := \sum_{T \in \mathcal{L}} u^{|\sigma(T)|} z^{|T|} \implies \mathbb{E}_n[|\sigma(T)|] = \frac{[z^n]\partial_u L(z,u)|_{u=1}}{[z^n]L(z,u)|_{u=1}},$$

encodes input and output sizes.

Symbolic Step. We find a formal equation describing L(z, u).
 Here this is done from a *combinatorial specificiation*

$$\boldsymbol{y}(z, u) = \boldsymbol{F}(z, u; \boldsymbol{y}(z, u)).$$

We employ Analytic Combinatorics to study the expectation,

Bivariate generating function

$$L(z,u) := \sum_{T \in \mathcal{L}} u^{|\sigma(T)|} z^{|T|} \implies \mathbb{E}_n[|\sigma(T)|] = \frac{[z^n]\partial_u L(z,u)|_{u=1}}{[z^n]L(z,u)|_{u=1}},$$

encodes input and output sizes.

Symbolic Step. We find a formal equation describing L(z, u).
 Here this is done from a *combinatorial specificiation*

$$\boldsymbol{y}(z, u) = \boldsymbol{F}(z, u; \boldsymbol{y}(z, u)).$$

▶ Analytic Step. A *Transfer Theorem* links the behaviour at dominant singularities $\rho \in \mathbb{C}$ to asymptotics of coefficients

$$L(z) \sim_{z \to \rho} \lambda (1 - z/\rho)^{-\alpha} \Longrightarrow [z^n] L(z) \sim \lambda n^{\alpha - 1} / \Gamma(\alpha) \rho^{-n}.$$

We employ Analytic Combinatorics to study the expectation,

Bivariate generating function

$$L(z,u) := \sum_{T \in \mathcal{L}} u^{|\sigma(T)|} z^{|T|} \implies \mathbb{E}_n[|\sigma(T)|] = \frac{[z^n]\partial_u L(z,u)|_{u=1}}{[z^n]L(z,u)|_{u=1}},$$

encodes input and output sizes.

Symbolic Step. We find a formal equation describing L(z, u).
 Here this is done from a *combinatorial specificiation*

$$\boldsymbol{y}(z, u) = \boldsymbol{F}(z, u; \boldsymbol{y}(z, u)).$$

▶ Analytic Step. A *Transfer Theorem* links the behaviour at dominant singularities $\rho \in \mathbb{C}$ to asymptotics of coefficients

$$L(z) \sim_{z \to \rho} \lambda (1 - z/\rho)^{-\alpha} \Longrightarrow [z^n] L(z) \sim \lambda n^{\alpha - 1} / \Gamma(\alpha) \rho^{-n}.$$

 \Rightarrow Study asymptotics over $z\in\mathbb{C}$

Combinatorial specification: two letters $\Sigma = \{a, b\}$

For every $X \subseteq \{a, b\}$ introduce:

- *T*_{X,ε} the set of trees recognizing every letter in X and ε, and no letter not in X
- *T*_{X,ε̄} the set of trees recognizing every letter in X, and no letter not in X, nor ε

Combinatorial specification: two letters $\Sigma = \{a, b\}$

For every $X \subseteq \{a, b\}$ introduce:

- *T*_{X,ε} the set of trees recognizing every letter in X and ε, and no letter not in X
- *T*_{X,ε̄} the set of trees recognizing every letter in X, and no letter not in X, nor ε

$$\begin{split} \mathcal{T}_{X,\varepsilon} &= \varepsilon \mathbf{1}_{X=\emptyset} + \overset{\star}{\tau_{X,\varepsilon}} + \overset{\star}{\tau_{X,\overline{\varepsilon}}} + \sum_{(S,S'):S\cup S'=X} \tau_{S,\varepsilon} \overset{\wedge}{\tau_{S',\varepsilon}} \\ &+ \sum_{(S,S'):S\cup S'=X} \tau_{S,\varepsilon} \overset{+}{\tau_{S',\varepsilon}} + \sum_{(S,S'):S\cup S'=X} \tau_{S,\varepsilon} \overset{+}{\tau_{S',\varepsilon}} + \sum_{(S,S'):S\cup S'=X} \tau_{S,\overline{\varepsilon}} \overset{+}{\tau_{S',\varepsilon}} \\ \mathcal{T}_{X,\overline{\varepsilon}} &= X \mathbf{1}_{|X|=1} + \sum_{S\subseteq\Sigma} \tau_{X,\overline{\varepsilon}} \overset{\wedge}{\tau_{S,\varepsilon}} + \sum_{S\subseteq\Sigma} \tau_{S,\varepsilon} \overset{\wedge}{\tau_{X,\overline{\varepsilon}}} + \mathbf{1}_{X=\emptyset} \sum_{S,S'\subseteq\Sigma} \tau_{S,\overline{\varepsilon}} \overset{\wedge}{\tau_{S',\overline{\varepsilon}}} \\ &+ \sum_{(S,S'):S\cup S'=X} \tau_{S,\overline{\varepsilon}} \overset{+}{\tau_{S',\overline{\varepsilon}}}, \end{split}$$

Example: combinatorial specification

Trees recognizing the letter a and no other letter, and not recognizing arepsilon

Definition (Fully reducible expressions)

A regular expression tree T is fully reducible when $\sigma(T) = \mathcal{U}$. In other words, it is recognized as universal by our algorithm.

Definition (Fully reducible expressions)

A regular expression tree T is fully reducible when $\sigma(T) = U$. In other words, it is recognized as universal by our algorithm.

Dictate the reduction process: leaves of reduced expression.

Definition (Fully reducible expressions)

A regular expression tree T is fully reducible when $\sigma(T) = \mathcal{U}$. In other words, it is recognized as universal by our algorithm.

Dictate the reduction process: leaves of reduced expression.

Size after reduction $p = |\mathcal{U}|$ for $T \in \mathcal{R}$.

Definition (Fully reducible expressions)

A regular expression tree T is fully reducible when $\sigma(T) = U$. In other words, it is recognized as universal by our algorithm.

- Dictate the reduction process: leaves of reduced expression.
- Size after reduction $p = |\mathcal{U}|$ for $T \in \mathcal{R}$.
- \blacktriangleright The class of fully reducible trees ${\cal R}$ satisfies the equation:

$$\mathcal{R} = \overset{\star}{\mathcal{T}_{\Sigma,\overline{\varepsilon}}} + \overset{\star}{\mathcal{T}_{\Sigma,\varepsilon}} + \overset{+}{\mathcal{N}_{\mathcal{L}}} + \overset{+}{\mathcal{N}_{\mathcal{L}}} + \overset{+}{\mathcal{N}_{\mathcal{L}}} + \overset{\bullet}{\mathcal{N}_{\mathcal{L}}} + \overset{\bullet}{\mathcal{N}_{\mathcal{E}}} + \overset{\bullet}{\mathcal{T}_{\varepsilon} \setminus \mathcal{R}} \mathcal{R}.$$

 \implies completes the combinatorial specification of L(z, u).

Solving efficiently: auxiliary classes

• every tree :
$$\mathcal{L} = \bigcup_X \mathcal{T}_{X,\varepsilon} \cup \mathcal{T}_{X,\overline{\varepsilon}}$$

 $\mathcal{L} = a + b + \varepsilon + \overset{*}{\mathcal{L}} + \overset{\bullet}{\mathcal{L}}_{\mathcal{L}} + \overset{+}{\mathcal{L}}_{\mathcal{L}}^{\dagger}_{\mathcal{L}}$
 $L(z) = 3z + zL(z) + 2z(L(z))^2$
• trees recognizing ε : $\mathcal{T}_{\varepsilon} = \bigcup_X \mathcal{T}_{X,\varepsilon}$
 $\mathcal{T}_{\varepsilon} = \varepsilon + \overset{*}{\mathcal{L}} + \overset{\bullet}{\mathcal{T}_{\varepsilon}} + \overset{+}{\mathcal{T}_{\varepsilon}} \overset{+}{\mathcal{L}} + \overset{+}{\mathcal{L}} \overset{+}{\mathcal{T}_{\varepsilon}} \tau_{\varepsilon}$
 $T_{\varepsilon}(z) = \frac{z + zL(z)}{1 - 2zL(z)}$
• trees not recognizing ε : $T_{\overline{\varepsilon}}(z) = L(z) - T_{\varepsilon}(z)$

The system becomes triangular

2

$$\begin{split} T_{\emptyset,\overline{\varepsilon}}(z) &= function(T_{\emptyset,\overline{\varepsilon}}(z)) \\ T_{\{a\},\overline{\varepsilon}}(z) &= function(T_{\{a\},\overline{\varepsilon}}(z),T_{\emptyset,\overline{\varepsilon}}(z)) \\ T_{\{b\},\overline{\varepsilon}}(z) &= function(T_{\{b\},\overline{\varepsilon}}(z),T_{\emptyset,\overline{\varepsilon}}(z)) \\ T_{\{a,b\},\overline{\varepsilon}}(z) &= function(T_{\{a,b\},\overline{\varepsilon}}(z),T_{\{a\},\overline{\varepsilon}}(z),T_{\{b\},\overline{\varepsilon}}(z),T_{\emptyset,\overline{\varepsilon}}(z)) \\ T_{\emptyset,\varepsilon}(z) &= function(T_{\emptyset,\varepsilon}(z),T_{\emptyset,\overline{\varepsilon}}(z)) \end{split}$$

 $T_{\{a,b\},\varepsilon}(z) = function(T_{\{a,b\},\varepsilon}(z), \text{and everyone above})$

> Each equation is of degree $2 \Rightarrow$ exactly solvable

$$\begin{split} T_{\{a,b\},\overline{z}}(z) &= \tfrac{1}{4z} \Big(-\sqrt{\Delta(z)} + 2\sqrt{(2z+2)}\,\sqrt{\Delta(z)} - 6z^2 + 2} - \sqrt{(2z+2)}\,\sqrt{\Delta(z)} + 10z^2 + 2 - z - 1 \Big)\,, \\ \text{where } \Delta(z) \text{ is the determinant of the equation for } L(z). \end{split}$$

The expression

$$T_{\{a,b\},\overline{z}}(z) = \frac{1}{4z} \left(-\sqrt{\Delta(z)} + 2\sqrt{(2z+2)}\sqrt{\Delta(z)} - 6z^2 + 2 - \sqrt{(2z+2)}\sqrt{\Delta(z)} + 10z^2 + 2 - z - 1 \right),$$

implies a square-root behaviour

$$T_{\{a,b\},\overline{\varepsilon}}(z) \sim A - B\sqrt{1-z/\rho}$$

for z close to dominant singularity $\rho.$

The expression

 $T_{\{a,b\},\overline{\varepsilon}}(z) = \frac{1}{4z} \left(-\sqrt{\Delta(z)} + 2\sqrt{(2z+2)}\sqrt{\Delta(z)} - 6z^2 + 2 - \sqrt{(2z+2)}\sqrt{\Delta(z)} + 10z^2 + 2 - z - 1 \right),$

implies a square-root behaviour

$$T_{\{a,b\},\overline{\varepsilon}}(z) \sim A - B\sqrt{1 - z/\rho}$$

for z close to dominant singularity ρ .

More generally

▶ square-root behaviour generalizes to $T_{X,\varepsilon}$ and $T_{X,\overline{\varepsilon}}$,

The expression

 $T_{\{a,b\},\overline{\varepsilon}}(z) = \frac{1}{4z} \left(-\sqrt{\Delta(z)} + 2\sqrt{(2z+2)}\sqrt{\Delta(z)} - 6z^2 + 2 - \sqrt{(2z+2)}\sqrt{\Delta(z)} + 10z^2 + 2 - z - 1 \right),$

implies a square-root behaviour

$$T_{\{a,b\},\overline{\varepsilon}}(z) \sim A - B\sqrt{1 - z/\rho}$$

for z close to dominant singularity ρ .

More generally

Square-root behaviour generalizes to $T_{X,\varepsilon}$ and $T_{X,\overline{\varepsilon}}$, and for every $k = |\Sigma| \Rightarrow$ use Drmota's Theorem.

The expression

 $T_{\{a,b\},\overline{z}}(z) = \frac{1}{4z} \left(-\sqrt{\Delta(z)} + 2\sqrt{(2z+2)}\sqrt{\Delta(z)} - 6z^2 + 2 - \sqrt{(2z+2)}\sqrt{\Delta(z)} + 10z^2 + 2 - z - 1 \right),$

implies a square-root behaviour

$$T_{\{a,b\},\overline{\varepsilon}}(z) \sim A - B\sqrt{1 - z/\rho}$$

for z close to dominant singularity ρ .

More generally

square-root behaviour generalizes to T_{X,ε} and T_{X,ε}, and for every k = |Σ| ⇒ use Drmota's Theorem.
 then to ∂_uL(z, u)|_{u=1}, numerator of the expectation. [Closure]

The expression

 $T_{\{a,b\},\overline{z}}(z) = \frac{1}{4z} \left(-\sqrt{\Delta(z)} + 2\sqrt{(2z+2)}\sqrt{\Delta(z)} - 6z^2 + 2 - \sqrt{(2z+2)}\sqrt{\Delta(z)} + 10z^2 + 2 - z - 1 \right),$

implies a square-root behaviour

$$T_{\{a,b\},\overline{\varepsilon}}(z) \sim A - B\sqrt{1 - z/\rho}$$

for z close to dominant singularity ρ .

More generally

square-root behaviour generalizes to T_{X,ε} and T_{X,ε}, and for every k = |Σ| ⇒ use Drmota's Theorem.
 then to ∂_uL(z, u)|_{u=1}, numerator of the expectation. [Closure]

► Coefficients A and B determine asymptotics [Transfer Theorem]

The expression

 $T_{\{a,b\},\overline{\varepsilon}}(z) = \frac{1}{4z} \Big(-\sqrt{\Delta(z)} + 2\sqrt{(2z+2)}\sqrt{\Delta(z)} - 6z^2 + 2 - \sqrt{(2z+2)}\sqrt{\Delta(z)} + 10z^2 + 2 - z - 1 \Big) \,,$

implies a square-root behaviour

$$T_{\{a,b\},\overline{\varepsilon}}(z) \sim A - B\sqrt{1 - z/\rho}$$

for z close to dominant singularity ρ .

More generally

square-root behaviour generalizes to T_{X,ε} and T_{X,ε}, and for every k = |Σ| ⇒ use Drmota's Theorem.
 then to ∂_uL(z, u)|_{u=1}, numerator of the expectation. [Closure]

Coefficients A and B determine asymptotics [Transfer Theorem] we show how to compute these efficiently.

Conclusion and further work

- We have shown a simple linear algorithm, reducing uniform regular expressions to small constant size.
- Therefore, uniform random regular expression trees tend to describe very limited languages.

Conclusion and further work

- We have shown a simple linear algorithm, reducing uniform regular expressions to small constant size.
- Therefore, uniform random regular expression trees tend to describe very limited languages.

Future work

- Other distributions seem more appropriate (BST, ...)
- Algorithm (partially) detects universality, improvements ?

Conclusion and further work

- We have shown a simple linear algorithm, reducing uniform regular expressions to small constant size.
- Therefore, uniform random regular expression trees tend to describe very limited languages.

Future work

- Other distributions seem more appropriate (BST, ...)
- Algorithm (partially) detects universality, improvements ?

Thank you!