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Motivation: random generation
» Random generation from coin-tosses
e Random binary digits X7, X5, ... give uniform

X =(0.X1X5...)2 €[0,1].
e Discrete random variable Y simulated by

Y=k<= Xclp :[ijvpk+zp]>'

i<k i<k

e Producing truly random (X;) costly.
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» Random generation from coin-tosses
e Random binary digits X7, X5, ... give uniform

X =(0.X1X5...)2 €[0,1].
e Discrete random variable Y simulated by

Y=k Xeclp z[ZpJ, pk+zpj>

i<k i<k

e Producing truly random (X;) costly.

» Simulation of an stochastic process
e Sequence (source) of random variables Y = (Y1,Y3,...)
o With X;,...,X,, longest (Y7,...,Y,,) obtainable ?

e Digits (Y;) of expansions of X in other basis +—
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Motivation: numeration systems
Natural question:
» Given t binary digits dy,do, ..., d; of
x = (0.d1dz...)2 €0,1].
» Number n of CFE-digits (partial quotients) deduced ?
1

1
a1 +

as +

We consider the quotient ny(z)/t :
» rate of CFE digits per binary digit,

» compares relative information/redundancy of expansions.

Spoiler: there is C' > 0, s.t. ny(x)/t — C for almost every z.
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General problem
» Classical: From source S; to Sa, both of positive entropy:
lim Ly (z; S1,52)/t = h(S1)/h(S2) .
= What if h(S1) =0or h(S2) =07
» Our setting: h(S1) > 0 and Sy € {Sturm, Stern — Brocot}
— Almost surely L/t — oo. More precise results?

— Can we compare the two sources?

Theorem (BCRS'?77)

If Sy is the binary source:
10g2

» For So = Sturm, we have 1 ;logk — for almost every x.

6log 2

» For Sy = Stern — Brocot, we have * — =3~ In prob.

t logm




Our sources
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Positive entropy h > 0
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Sturm and Stern-Brocot closely related to continued fractions:
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.| as an intermediate source.
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Our sources

Positive entropy h > 0
Sturm source (Fy)
k

2
| Continued Fractions U Binary
n
Stern-Brocot (J Ny t
source (SBy,) n kB
1

m 1

m . 15
n logm log 2

Sturm and Stern-Brocot closely related to continued fractions:
» Continued fractions = [a1, as,...] as an intermediate source.

» For these cases, composing the arrows works (%) :

e For Sturm w — %% 1°g2 for almost every z.

m(z,t) 1 ( ) _ 6log?2

t Tog m(x,t) log2 h(C) — w2

e For Stern-Brocot 1 in probability.



Plan of the talk

1. Sources of positive entropy

2. Important zero entropy sources

3. Conclusions



First historical results for h > 0

Theorem (Lochs '64)
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lim =
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First historical results for h > 0

Theorem (Lochs '64)
The rate of CF-digits per decimal satisfies

. na(x) 6log2log10
lim =
t—oco d 2

= 0.9702701 ... ,

for almost every x.

“Example”. The first 1000 decimal of m determine exactly 968
partial quotients of 7.

Theorem (Faivre '98)

_ 0
Pr{xe[o,l]:%\/adxagg}_)\/%/ e 2y

6log2log 10
72

where a = is the Lochs' constant, and o > 0.
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Expansions and intervals
» Decimal expansion = (0.d1dz .. .)10

IP(x) = [(0.d; ... da)10, (0.dy ... da)10 +1079].

» Continued fraction expansion = = [a1, ag, . . .|

I°(z) = [[al,...,an,u,[al,...,an,oﬂ - [p"“’"—l p"} ,

An + Gn—1 ’ dn
where [ay,...,an] = Pn/qn is the reduced fraction.

Characterization of ngy(x)

na(z) = max{n >0: IP(z) c IS(x)}.

Lochs’ Theorem inuitions:

. . 2
» Typical continuants: log g, (x) ~ m’fwn, Levy's constant.

> Take log of lengths : —log |IP(x)| ~ —log |IS(z)]



Intervals: sources and partitions

Definition (System of partitions)

Sequence of topological partitions P = (P,,) of [0, 1]
» P, refinement of P, for every n.
» ||P.|| = sup{diam(]) : I € P,} tends to 0.




Intervals: sources and partitions

Definition (System of partitions)

Sequence of topological partitions P = (P,,) of [0, 1]
» P41 refinement of P, for every n.
» ||P.|| = sup{diam(I) : I € P,} tends to 0.

Systems of partitions define sources with (a.e.) continuous coding
» labeling functions py: Pp, — A,
» for [ € Py_1, pn injective over Py|; :={J € Pp,J NI #(}.



Intervals: sources and partitions

Definition (System of partitions)

Sequence of topological partitions P = (P,,) of [0, 1]
» P41 refinement of P, for every n.
» ||P.|| = sup{diam(I) : I € P,} tends to 0.

Systems of partitions define sources with (a.e.) continuous coding
» labeling functions py: Pp, — A,
» for [ € Py_1, pn injective over Py|; :={J € Pp,J NI #(}.
» notation I} (z) = I € P, such that z € T



Intervals: sources and partitions

Definition (System of partitions)

Sequence of topological partitions P = (P,,) of [0, 1]
» P41 refinement of P, for every n.
» ||P.|| = sup{diam(I) : I € P,} tends to 0.

Systems of partitions define sources with (a.e.) continuous coding
» labeling functions py: Pp, — A,
» for [ € Py_1, pn injective over Py|; :={J € Pp,J NI #(}.
» notation I} (z) = I € P, such that z € T

unique coding ¢: x > (dids...)p with d, = pp(I7(z)).
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Entropy of a partition

Entropy dictates size of intervals

» Shannon entropy!:

H(P)=— lim - Z [1]1og |1] .
IGPk

» Point-wise: for almost every x

h(P) = — lim %log‘f,?(xﬂ .

k—o0

Point-wise to Shannon

1
H(P) = kli_)n;()[E[ ~ - log yf,f(x)\] .

Notation. For associated source: IS (x), H(S) and h(S).

'We only consider Lebesgue measure here.
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Generalization Lochs’: positive entropy
Lochs’ index for sources S, S?

Ly(z;8Y,8%) := max{m >0: I;?l (x) C I;ff(x)},

number of digits of S? deduced from n digits from S*.

Theorem (Dajani, Fieldsteel, 2001)

Consider sources S* and S?, with defined and positive point-wise
entropies h(S') and h(S?). Then

1
lim —L,(v;S', 8% =
Jm 28587 = 3

for a.e. .

- Binary. Since |IP(x)| = 27, h(B) = log?2.
— Continued fractions. Intervals satisfy |I¢(z)| = ©((qx(7))2)

2

- 6log2 "

h(C) =2 lim lloqu(:v)
k—oo k



Existence of point-wise entropy

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a
probability space (2, B, 1) and let P be a finite or countable
generating partition for T' for which H,(P) < co. Then for ji-a.e.

x'

i 08 4 (Pu(@))

n—o00 n
Here H, (P) denotes the entropy of the partition P, h,(T') the
entropy of T' and P, (z) denotes the element of the partition
\/?:_01 T—'P containing x.

= h(T).




Existence of point-wise entropy

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a
probability space (2, B, 1) and let P be a finite or countable
generating partition for T' for which H,(P) < co. Then for ji-a.e.

$V

i 08 4 (Pu(@))

n—o00 n
Here H, (P) denotes the entropy of the partition P, h,(T') the
entropy of T' and P, (z) denotes the element of the partition
\/?:_01 T—'P containing x.

= h(T).

We recall that
hu(T) = sup{h, (T, A) : A countable partition of X},

and

h(T,A) = lim lH(A(U),A(TU),...,A(T’HU)) :

n—o00 N,

where U is distributed according to p.
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Our zero entropy sources

Farey partition (Sturm source) and Stern-Brocot partition built by
splitting intervals at mediant

mediant(a/b,c/d) := (a+b)/(c+d).

Farey partition Fy:
» Base case: Fy = {[0, 1]}.

Stern-Brocot partition SB,,:
> Base case: SBy = {[0,1]}.

| 2 Bl:l::di:r;g ;F:I.ke ]: > Bu||d|ng SBm:
split %, 5 k—1, lit | 2,5 |
P16 g} € spli [b,d]ESBm—l always.
SBy: 0/1 &
881 . 1/2
SBy: 13 =
SB3 : L4 2/5 = o

SBy - 5 2/T_ 3/83/T 4)T5/8  5/T_ 4/5

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
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Farey,Stern-Brocot and Continued Fractions

Farey partition Fy: Stern-Brocot partition SB,
[%,ﬁ]e-;k—lab‘i’dgk‘f“l [bad}ESBm 1
=[5, 554). [555. 8] € 7 =[5, 574 55, &) € SBm

Related to continued fractions. Mediants of x € [p" o=, b, yield?

Pn—1 <pn—1+pn < <pn—1'i_7"pn<x§]ﬁ7

-1~ 1+ @~ Gue1 g T In

the quotient a,,+1 giving largest » > 1 such tha e T e S

2We keep only the interval containing .

t pn 1+7Pn — DPnt1 < 7.



Farey,Stern-Brocot and Continued Fractions

Farey partition Fy: Stern-Brocot partition SB,,:
[%,g] € Fr—1,b+d<Ek+1 [%,ﬂ € SB,,-1
= 3. 054 (550 4] € 7 = [§, 5] [345, d] € SBm

Related to continued fractions. Mediants of z € [E2=2 Bu], yield

qn—1"
pn—lSpn—1+pnS..'Spn—l'i_rpngm_&’
dn—1 Gn—1 1 qn Gn—1+7qn dn

H . Pn—1+t"Pn __ Pn+1
the quotient a,,+1 giving largest r > 1 such that e T o <z

Lemma

_ | Pn—1tTPn pa .
Letlr,n = m,%], 0<r< Apt1 -

» For Farey: qp—1+7¢n <k+1<gy_1+ (r+1agn L, = I,'f(x) .

> For Stern-Brocot: m =a1+ ...+ an +7, Liy1, = IiB(UU) .
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Farey partition

Farey partition Fy:
» Base case: Fy = {[0, 1]}.

» Building Fy: split [%, 5] € Fj_1 at mediant &£ ifb+d < k+ 1.

1/1

bid
Fy:0/1
e 1/2
Fy: 1/3 2/3
Fa: 1/4 3/4
Fa: 1/5 2/5 3/5 4/5
Properties:

» Fj. determines char. Sturmian word up to (k — 1)-th symbol.
» The end-points Fj are exactly {$ € Q:0<a <b<Fk+1}.

> Small : ©(k?) intervals in F = entropy 0.
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Theorem (Lochs’ index of Farey)

log 2
lim %10gLn(:v;B,]-") _ 082
n—oo

Farey intervals have comparable size:

Lemma (Entropy of Farey)

For almost every x, for large k > ko(z)

log k) (loglog k
—<‘I}€F(x)‘§( )(kz )




Binary to Farey

Theorem (Lochs’ index of Farey)

log 2
; 1 . —
Jl)ngoﬁlogLn(x,B,f)— 5

Farey intervals have comparable size:

Lemma (Entropy of Farey)

For almost every x, for large k > ko(x)

7 ()| < (log k)(;;)g log k)

Figure. Histogram of
interval sizes for k = 20.
S =0.0025, & = 0.05.




Binary to Farey

Theorem (Lochs’ index of Farey)

log 2
lim Llog L, (z;B,F) = 082
n—oo M 2
Farey intervals have comparable size:
Lemma (Entropy of Farey)
For almost every x, for large k > ko(z)
1 F (log k) (log log k)

Hand-waving argument: compare sizes

—log|I{ (z)| ~ 2logk, —log|If| = (log2)n.
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Two steps: lower limit and upper limit.

» Intermediate source B — C — F.

“Triangle" inequality for transformation S! — S? — S3
Ljn(ar) (xa S2a 53) < Ln(ﬂf, Sla 53) )

Jn(x) := Ly (7; S, 8?).



Formal argument

Two steps: lower limit and upper limit.

» Intermediate source B — C — F.

“Triangle" inequality for transformation S! — S? — S3
L @) (@82, 8%) < Ly(2; 8", 8%,
Jn(x) == Ly (2; S, 8?).
» Upper limit follows from comparing sizes:
I5(z) too big for I (x),

when k = 2n/2(1+e)



Stern-Brocot partition

SBy :
SBi :
SBs :
SB3 :
SBy :

Stern-Brocot partition SB,:
> Base case: SBy = {[0,1]}.

» Building SB,,,: split [“

0/1

b

, g] € §B,,_1 always.

1/1

1/2

1/3

2/3

1/4

2/5

3/5

3/4

1/5

2/7

3/8 3/

4/75/8

5/7

4/5

~

~

~

~

~

~

~

~

~



Stern-Brocot partition

SBy :
SBi :
SBs :
SB3 :
SBy :

Stern-Brocot partition SB,,:
> Base case: SBy = {[0,1]}.

> Building SBy: split [¢, 5] € SBy,—1 always.
0/1

1/1

1/2

1/3 2/3

1/4 2/5 3/5 3/4

/5 2/7_ 3/83/T 4)75/8  5/1

4/5

~ ~ ~ ~ ~ ~ ~ ~ ~

Associated to binary encoding of continued fractions:
[a1,ag,...] — [0 1,097 1, ]

which follows construction of CFs by mediants.

~
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Binary to Stern-Brocot

Theorem
thm - 107g"m %ng in probability, where m = L(x; B, SB).
— 00

Lemma
If n = ng(x) := L(x;B,C), then

S ai(e) <mg(z) < S a(a).

Proof.

Recall: depth is number of mediants taken m = a1 + ...+ a, +r. O

Theorem (Khinchin,35)

In probability hn;O W S ai(x) = @ .

Proof sketch for Stern-Brocot.

To use Khinchin, we use concentration [Faivre98] of n = Ly(z;B,C). [




Sums of partial quotients: why in probability?

Lemma
With probability 1, for e > 0

n n

. 1 .
nh_}nolo nllog m)i+ iz—;ai(m) =0, hTILn_)solip nlogn iz—;a,-(a:) =00.




Sums of partial quotients: why in probability?

Lemma
With probability 1, for e > 0

n n

1
lim ——— Zai(az) =0, limsup Zai(a:) =00.

n—o0 n(logn)ite — n—oo nlogn

Proof. By Borel-Bernstein. Note a,,(z) > nlognloglogn occurs
an infinite number of times for a.e. x. U



Sums of partial quotients: why in probability?

Lemma
With probability 1, for e > 0

n n

lim ;Zal( ) =0, limsup Zai(a:) =00.

n—o0 n(logn)ite — n—oo nlogn

Proof. By Borel-Bernstein. Note a,,(z) > nlognloglogn occurs
an infinite number of times for a.e. x. U

Partial sums )" | a;(z) are regular when we take out max a;(x)

Theorem (Diamond,Vaaler,98)
For large enough n > Ny(z), there is 0 < 94 (n,x) <1 such that

Z a;(z) = ?_é)nlogn + Yy (n,z) max a;(x).

<i<n




Change of basis and tries: intuitions

Set of n words z1, ...

x1
Z2
x3
T4
Ts

0100101100. ..
0101001101...
1001101100. ..
1010001001. ..
1011111000. ..

, T, emitted by B =

5

depth t ~ logy 1

B
5 b



Change of basis and tries: intuitions
Set of n words z1,...,x, emitted by B = depth ¢t ~ logy n

1 | 0100101100. .. (OA\

22 | 0101001101 .. ! :

x5 | 1001101100. .. $ 4y
24 | 1010001001. .. Loogr

x5 | 1011111000. .. ‘i ‘ i

Then we estimate depth of the tries in our sources:

» Fk digits from Sturm source with (1/t)logk ~ =5=,

log k ~ log v/n.



Change of basis and tries: intuitions
Set of n words z1,...,x, emitted by B = depth ¢t ~ logy n

1 | 0100101100. .. 0"

2y | 0101001101. . v
z5 | 1001101100. .. $ 2%
x4 | 1010001001... A{ ‘

x5 | 1011111000. .. ‘i ‘ i

Then we estimate depth of the tries in our sources:

.. . log 2
» Fk digits from Sturm source with (1/t)logk ~ =5=,

log k ~ log v/n.

> m digits from Stern-Brocot with (1/¢)m/logm ~ 61;’—§2

6
m = = log nlog log n

in probability. Wrong?



Change of basis and tries: intuitions

Set of n words z1, ...

x1
Z2
x3
T4
Ts

0100101100. ..
0101001101...
1001101100. ..
1010001001. ..
1011111000. ..

, T, emitted by B = depth ¢t ~ logy n

0/.\1
R
t 0*1
fodp

£ g

Then we estimate depth of the tries in our sources:

.. . log 2
» Fk digits from Sturm source with (1/t)logk ~ =5=,

> m digits from Stern-Brocot with (1/¢)m/logm ~

log k ~ log v/n.

6log 2
2

6
m = = log nlog log n

in probability. Wrong? Stern-Brocot intervals very uneven...



Conclusions and further work

We have discussed two sources defined from the mediants
@ The Farey partition Fj
— is seemingly irregular by construction, but
— has regular interval lengths |I7 (z)| ~ k=2 (log “entropy”?)
— number of digits produced from ¢ binary one is exponential.
® The Stern-Brocot partition
— is seemingly more regular, intervals always split yet
— results require convergence in probability

— number of digits produced from ¢ binary is m ~ tlogt.
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1. Coming back from zero entropy to positive entropy is more irregular.
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Conclusions and further work

We have discussed two sources defined from the mediants
@ The Farey partition Fj
— is seemingly irregular by construction, but
— has regular interval lengths |I7 (z)| ~ k=2 (log “entropy”?)
— number of digits produced from ¢ binary one is exponential.
® The Stern-Brocot partition
— is seemingly more regular, intervals always split yet
— results require convergence in probability

— number of digits produced from ¢ binary is m ~ tlogt.
Questions and further work
1. Coming back from zero entropy to positive entropy is more irregular.
2. General chain rules S — §? — S37? Partial results.

3. Get a formal link with ?



Thank you!
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