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Motivation: random generation

I Random generation from coin-tosses

• Random binary digits X1, X2, . . . give uniform

X = (0.X1X2 . . .)2 ∈ [0, 1] .

• Discrete random variable Y simulated by

Y = k ⇐⇒ X ∈ Ik(p) :=
[∑
j<k

pj , pk +
∑
j<k

pj

)
.

• Producing truly random (Xi) costly.

I Simulation of an stochastic process

• Sequence (source) of random variables Y = (Y1, Y2, . . .)

• With X1, . . . , Xn, longest (Y1, . . . , Ym) obtainable ?

• Digits (Yi) of expansions of X in other basis ←−
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Motivation: numeration systems

Natural question:

I Given t binary digits d1, d2, . . . , dt of

x = (0.d1d2 . . .)2 ∈ [0, 1] .

I Number n of CFE-digits (partial quotients) deduced ?

x =
1

a1 +
1

a2 +
. . .

.

We consider the quotient nt(x)/t :

I rate of CFE digits per binary digit,

I compares relative information/redundancy of expansions.
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Spoiler: there is C > 0, s.t. nt(x)/t→ C for almost every x.



Motivation: source transformation

General problem

I Classical: From source S1 to S2, both of positive entropy:

limLt(x;S1, S2)/t = h(S1)/h(S2) .

=⇒ What if h(S1) = 0 or h(S2) = 0 ?

I Our setting: h(S1) > 0 and S2 ∈ {Sturm, Stern− Brocot}

– Almost surely L/t→∞. More precise results?

– Can we compare the two sources?

Theorem (BCRS’??)

If S1 is the binary source:

I For S2 = Sturm, we have 1
t log k → log 2

2 for almost every x.

I For S2 = Stern− Brocot, we have 1
t

m
logm →

6 log 2
π2 in prob.
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Our sources

Sturm source (Fk)

Stern-Brocot
source (SBm)

Continued Fractions Binary

Positive entropy h > 0

k

m

n t

n
t
→ h(B)

h(C)

t
n
→ h(C)

h(B)

log k

n
→ h(C)

2

1

n

m

logm
→ 1

log 2

Sturm and Stern-Brocot closely related to continued fractions:

I Continued fractions x = [a1, a2, . . .] as an intermediate source.

I For these cases, composing the arrows works (∗) :

• For Sturm log k(x,t)
t → h(C)

2
h(B)
h(C) = log 2

2 for almost every x.

• For Stern-Brocot 1
t

m(x,t)
logm(x,t) →

1
log 2

h(B)
h(C) = 6 log 2

π2 in probability.
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Plan of the talk

1. Sources of positive entropy

2. Important zero entropy sources

3. Conclusions



First historical results for h > 0

Theorem (Lochs ’64)

The rate of CF-digits per decimal satisfies

lim
t→∞

nd(x)

d
=

6 log 2 log 10

π2
.
= 0.9702701 . . . ,

for almost every x.

“Example”. The first 1000 decimal of π determine exactly 968
partial quotients of π.

Theorem (Faivre ’98)

Pr

{
x ∈ [0, 1] :

nd(x)− d× a
σ
√
d

≤ θ

}
→ 1√

2π

∫ θ

−∞
e−u

2/2du ,

where a = 6 log 2 log 10
π2 is the Lochs’ constant, and σ > 0.
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Expansions and intervals
I Decimal expansion x = (0.d1d2 . . .)10

IDd (x) = [(0.d1 . . . dd)10, (0.d1 . . . dd)10 + 10−d] .

I Continued fraction expansion x = [a1, a2, . . .]

ICn(x) =
[
[a1, . . . , an, 1], [a1, . . . , an, 0]

]
=

[
pn + pn−1
qn + qn−1

,
pn
qn

]
,

where [a1, . . . , an] = pn/qn is the reduced fraction.

Characterization of nd(x)

nd(x) = max{n ≥ 0 : IDd (x) ⊂ ICn(x)} .

Lochs’ Theorem inuitions:

I Length: |IDd (x)| = 10−d, |ICn(x)| = 1
qn(qn+qn−1)

I Typical continuants: log qn(x) ∼ π2

12 log 2n, Levy’s constant.

I Take log of lengths : − log |IDd (x)| ≈ − log |ICn(x)|
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Intervals: sources and partitions

Definition (System of partitions)

Sequence of topological partitions P = (Pn) of [0, 1]

I Pn+1 refinement of Pn for every n.

I ‖Pn‖ = sup{diam(I) : I ∈ Pn} tends to 0.

Systems of partitions define sources with (a.e.) continuous coding

I labeling functions ρn : Pn → A,

I for I ∈ Pn−1, ρn injective over Pn|I := {J ∈ Pn, J ∩ I 6= ∅}.
I notation IPn (x) = I ∈ Pn such that x ∈ I

unique coding ϕ : x 7→ (d1d2 . . .)P with dn = ρn(IPn (x)).
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Entropy of a partition

Entropy dictates size of intervals

I Shannon entropy1:

H(P) = − lim
k→∞

1

k

∑
I∈Pk

|I| log |I| .

I Point-wise: for almost every x

h(P) = − lim
k→∞

1

k
log
∣∣IPk (x)

∣∣ .

Point-wise to Shannon

H(P) = lim
k→∞

E
[
− 1

k
log
∣∣IPk (x)

∣∣ ] .
Notation. For associated source: ISn (x), H(S) and h(S).

1We only consider Lebesgue measure here.
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Generalization Lochs’: positive entropy
Lochs’ index for sources S1,S2

Ln(x;S1,S2) := max{m ≥ 0 : IS
1

n (x) ⊂ IS2m (x)} ,

number of digits of S2 deduced from n digits from S1.

Theorem (Dajani, Fieldsteel, 2001)

Consider sources S1 and S2, with defined and positive point-wise
entropies h(S1) and h(S2). Then

lim
n→∞

1

n
Ln(x;S1,S2) =

h(S1)
h(S2)

for a.e. x.

– Binary. Since |IBt (x)| = 2−t, h(B) = log 2.

– Continued fractions. Intervals satisfy |ICk (x)| = Θ((qk(x))−2)

h(C) = 2 lim
k→∞

1

k
log qk(x) =

π2

6 log 2
.
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Existence of point-wise entropy

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a
probability space (Ω,B, µ) and let P be a finite or countable
generating partition for T for which Hµ(P ) <∞. Then for µ-a.e.
x,

lim
n→∞

− logµ (Pn(x))

n
= hµ(T ) .

Here Hµ(P ) denotes the entropy of the partition P , hµ(T ) the
entropy of T and Pn(x) denotes the element of the partition∨n−1
i=0 T

−iP containing x.

We recall that

hµ(T ) = sup{hµ(T,A) : A countable partition of X} ,

and

hµ(T,A) = lim
n→∞

1

n
H
(
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Our zero entropy sources

Farey partition (Sturm source) and Stern-Brocot partition built by
splitting intervals at mediant

mediant(a/b, c/d) := (a+ b)/(c+ d) .

Farey partition Fk:

I Base case: F0 = {[0, 1]}.
I Building Fk:

split
[
a
b ,

c
d

]
∈ Fk−1,

if b+ d ≤ k + 1.

Stern-Brocot partition SBm:

I Base case: SB0 = {[0, 1]}.
I Building SBm:

split
[
a
b ,

c
d

]
∈ SBm−1 always.



Our zero entropy sources

Farey partition (Sturm source) and Stern-Brocot partition built by
splitting intervals at mediant

mediant(a/b, c/d) := (a+ b)/(c+ d) .

Farey partition Fk:

I Base case: F0 = {[0, 1]}.
I Building Fk:

split
[
a
b ,

c
d

]
∈ Fk−1,

if b+ d ≤ k + 1.

Stern-Brocot partition SBm:

I Base case: SB0 = {[0, 1]}.
I Building SBm:

split
[
a
b ,

c
d

]
∈ SBm−1 always.



Our zero entropy sources

Farey partition (Sturm source) and Stern-Brocot partition built by
splitting intervals at mediant

mediant(a/b, c/d) := (a+ b)/(c+ d) .

Farey partition Fk:

I Base case: F0 = {[0, 1]}.
I Building Fk:

split
[
a
b ,

c
d

]
∈ Fk−1,

if b+ d ≤ k + 1.

Stern-Brocot partition SBm:

I Base case: SB0 = {[0, 1]}.
I Building SBm:

split
[
a
b ,

c
d

]
∈ SBm−1 always.

F0 : 0/1 1/1

F1 : 1/2

F2 : 1/3 2/3

F3 : 1/4 3/4

F4 : 1/5 2/5 3/5 4/5



Our zero entropy sources

Farey partition (Sturm source) and Stern-Brocot partition built by
splitting intervals at mediant

mediant(a/b, c/d) := (a+ b)/(c+ d) .

Farey partition Fk:

I Base case: F0 = {[0, 1]}.
I Building Fk:

split
[
a
b ,

c
d

]
∈ Fk−1,

if b+ d ≤ k + 1.

Stern-Brocot partition SBm:

I Base case: SB0 = {[0, 1]}.
I Building SBm:

split
[
a
b ,

c
d

]
∈ SBm−1 always.

SB0 : 0/1 1/1

SB1 : 1/2

SB2 : 1/3 2/3

SB3 : 1/4 2/5 3/43/5

SB4 : 1/5 2/7 3/8 3/7 4/7 5/8 5/7 4/5



Farey,Stern-Brocot and Continued Fractions

Farey partition Fk:[
a
b ,

c
d

]
∈ Fk−1, b+ d ≤ k + 1

⇒
[
a
b ,

a+c
b+d

]
,
[
a+c
b+d ,

c
d

]
∈ Fk

Stern-Brocot partition SBm:[
a
b ,

c
d

]
∈ SBm−1

⇒
[
a
b ,

a+c
b+d

]
,
[
a+c
b+d ,

c
d

]
∈ SBm

Related to continued fractions. Mediants of x ∈ [pn−1

qn−1
, pnqn ], yield

pn−1
qn−1

≤ pn−1 + pn
qn−1 + qn

≤ . . . ≤ pn−1 + rpn
qn−1 + rqn

≤ x ≤ pn
qn

,

the quotient an+1 giving largest r ≥ 1 such that pn−1+rpn
qn−1+rqn

= pn+1

qn+1
≤ x.

Lemma

Let Ir,n =
[
pn−1+rpn
qn−1+rqn

, pnqn

]
, 0 ≤ r < an+1 :

I For Farey: qn−1 + rqn ≤ k + 1 < qn−1 + (r + 1)qn, Ir,n = IFk (x) .

I For Stern-Brocot: m = a1 + . . .+ an + r, Ir+1,n = ISBm (x) .
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2We keep only the interval containing x.
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Farey partition

Farey partition Fk:

I Base case: F0 = {[0, 1]}.
I Building Fk: split

[
a
b ,

c
d

]
∈ Fk−1 at mediant a+c

b+d ,if b+ d ≤ k + 1.

F0 : 0/1 1/1

F1 : 1/2

F2 : 1/3 2/3

F3 : 1/4 3/4

F4 : 1/5 2/5 3/5 4/5

Properties:

I Fk determines char. Sturmian word up to (k − 1)-th symbol.

I The end-points Fk are exactly {ab ∈ Q : 0 ≤ a ≤ b ≤ k + 1}.
I Small number: Θ(k2) intervals in Fk

⇒ entropy 0.
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Binary to Farey

Theorem (Lochs’ index of Farey)

lim
n→∞

1
n logLn(x;B,F) =

log 2

2
.

Farey intervals have comparable size:

Lemma (Entropy of Farey)

For almost every x, for large k ≥ k0(x)

1

k2
≤
∣∣IFk (x)

∣∣ ≤ (log k)(log log k)

k2
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Binary to Farey

Theorem (Lochs’ index of Farey)

lim
n→∞

1
n logLn(x;B,F) =

log 2

2
.

Farey intervals have comparable size:

Lemma (Entropy of Farey)

For almost every x, for large k ≥ k0(x)

1

k2
≤
∣∣IFk (x)

∣∣ ≤ (log k)(log log k)

k2

Hand-waving argument: compare sizes

− log
∣∣IFk (x)

∣∣ ∼ 2 log k , − log
∣∣IBn ∣∣ = (log 2)n .



Formal argument

Two steps: lower limit and upper limit.

I Intermediate source B → C → F .

“Triangle” inequality for transformation S1 → S2 → S3

Ljn(x)(x;S2,S3) ≤ Ln(x;S1,S3) ,

jn(x) := Ln(x;S1,S2).

I Upper limit follows from comparing sizes:

IBn (x) too big for IFk (x),

when k = 2n/2(1+ε).
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Stern-Brocot partition

Stern-Brocot partition SBm:

I Base case: SB0 = {[0, 1]}.
I Building SBm: split

[
a
b ,

c
d

]
∈ SBm−1 always.

SB0 : 0/1 1/1

SB1 : 1/2

SB2 : 1/3 2/3

SB3 : 1/4 2/5 3/43/5

SB4 : 1/5 2/7 3/8 3/7 4/7 5/8 5/7 4/5

Associated to binary encoding of continued fractions:

[a1, a2, . . .] 7→ [0a1−1, 1, 0a2−1, 1, . . .]

which follows construction of CFs by mediants.
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Binary to Stern-Brocot

Theorem

lim
t→∞

1
t

m
logm = 6 log 2

π2 in probability, where m = Lt(x;B,SB).

Lemma

If n = nt(x) := Lt(x;B, C), then∑n
i=1 ai(x) ≤ mt(x) <

∑n+1
i=1 ai(x) .

Proof.
Recall: depth is number of mediants taken m = a1 + . . .+ an + r.

Theorem (Khinchin,35)

In probability lim
n→∞

1
n logn

∑n
i=1 ai(x) = 1

log 2 .

Proof sketch for Stern-Brocot.

To use Khinchin, we use concentration [Faivre98] of n = Lt(x;B, C).
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Sums of partial quotients: why in probability?

Lemma

With probability 1, for ε > 0

lim
n→∞

1

n(log n)1+ε

n∑
i=1

ai(x) = 0, lim sup
n→∞

1

n log n

n∑
i=1

ai(x) =∞ .

Proof. By Borel-Bernstein. Note an(x) > n log n log log n occurs
an infinite number of times for a.e. x. �

Partial sums
∑n

i=1 ai(x) are regular when we take out max ai(x)

Theorem (Diamond,Vaaler,98)

For large enough n ≥ N0(x), there is 0 ≤ ϑ+(n, x) ≤ 1 such that

n∑
i=1

ai(x) =
1 + o(1)

log 2
n log n+ ϑ+(n, x) max

1≤i≤n
ai(x) .
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Change of basis and tries: intuitions
Set of n words x1, . . . , xn emitted by B ⇒ Trie depth t ∼ log2 n

x1 0100101100. . .
x2 0101001101. . .
x3 1001101100. . .
x4 1010001001. . .
x5 1011111000. . . x

1

0

x
2

1

0

1

0

x
3

0
x
4

0

x
5

1

1

0

1

Then we estimate depth of the tries in our sources:

I k digits from Sturm source with (1/t) log k ∼ log 2
2 ,

log k ∼ log
√
n .

I m digits from Stern-Brocot with (1/t)m/ logm ∼ 6 log 2
π2

m ≈ 6

π2
log nlog log n

in probability. Wrong? Stern-Brocot intervals very uneven...
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Conclusions and further work

We have discussed two sources defined from the mediants

~ The Farey partition Fk
– is seemingly irregular by construction, but

– has regular interval lengths
∣∣IFk (x)

∣∣ ≈ k−2 (log “entropy”?)

– number of digits produced from t binary one is exponential.

~ The Stern-Brocot partition

– is seemingly more regular, intervals always split yet

– results require convergence in probability

– number of digits produced from t binary is m ∼ t log t.

Questions and further work

1. Coming back from zero entropy to positive entropy is more irregular.

2. General chain rules S1 → S2 → S3? Partial results.
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Thank you!
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