Change of basis towards sources of zero entropy

Pablo Rotondo
LIGM, Université Gustave Eiffel

Work in progress with
Valérie Berthé, Eda Cesaratto and Martín Safe

Meeting STIC-AmSud, RAPA2,
Online, 11 December, 2020.

Motivation: random generation

- Random generation from coin-tosses
- Random binary digits X_{1}, X_{2}, \ldots give uniform

$$
X=\left(0 . X_{1} X_{2} \ldots\right)_{2} \in[0,1] .
$$

- Discrete random variable Y simulated by

$$
Y=k \Longleftrightarrow X \in I_{k}(\mathbf{p}):=\left[\sum_{j<k} p_{j}, p_{k}+\sum_{j<k} p_{j}\right) .
$$

- Producing truly random $\left(X_{i}\right)$ costly.

Motivation: random generation

- Random generation from coin-tosses
- Random binary digits X_{1}, X_{2}, \ldots give uniform

$$
X=\left(0 . X_{1} X_{2} \ldots\right)_{2} \in[0,1] .
$$

- Discrete random variable Y simulated by

$$
Y=k \Longleftrightarrow X \in I_{k}(\mathbf{p}):=\left[\sum_{j<k} p_{j}, p_{k}+\sum_{j<k} p_{j}\right) .
$$

- Producing truly random (X_{i}) costly.
- Simulation of an stochastic process
- Sequence (source) of random variables $\mathcal{Y}=\left(Y_{1}, Y_{2}, \ldots\right)$
- With X_{1}, \ldots, X_{n}, longest $\left(Y_{1}, \ldots, Y_{m}\right)$ obtainable ?
- Digits $\left(Y_{i}\right)$ of expansions of X in other basis

Motivation: numeration systems

Natural question:

- Given t binary digits $d_{1}, d_{2}, \ldots, d_{t}$ of

$$
x=\left(0 . d_{1} d_{2} \ldots\right)_{2} \in[0,1] .
$$

- Number n of CFE-digits (partial quotients) deduced ?

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\ddots}} .
$$

Motivation: numeration systems

Natural question:

- Given t binary digits $d_{1}, d_{2}, \ldots, d_{t}$ of

$$
x=\left(0 . d_{1} d_{2} \ldots\right)_{2} \in[0,1] .
$$

- Number n of CFE-digits (partial quotients) deduced ?

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\ddots}} .
$$

We consider the quotient $n_{t}(x) / t$:

- rate of CFE digits per binary digit,
- compares relative information/redundancy of expansions.

Motivation: numeration systems

Natural question:

- Given t binary digits $d_{1}, d_{2}, \ldots, d_{t}$ of

$$
x=\left(0 . d_{1} d_{2} \ldots\right)_{2} \in[0,1] .
$$

- Number n of CFE-digits (partial quotients) deduced ?

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\ddots}} .
$$

We consider the quotient $n_{t}(x) / t$:

- rate of CFE digits per binary digit,
- compares relative information/redundancy of expansions.

Spoiler: there is $C>0$, s.t. $n_{t}(x) / t \rightarrow C$ for almost every x.

Motivation: source transformation

General problem

- Classical: From source S_{1} to S_{2}, both of positive entropy:

$$
\lim L_{t}\left(x ; S_{1}, S_{2}\right) / t=h\left(S_{1}\right) / h\left(S_{2}\right) .
$$

Motivation: source transformation

General problem

- Classical: From source S_{1} to S_{2}, both of positive entropy:

$$
\begin{aligned}
& \lim L_{t}\left(x ; S_{1}, S_{2}\right) / t=h\left(S_{1}\right) / h\left(S_{2}\right) . \\
& \Longrightarrow \text { What if } h\left(S_{1}\right)=0 \text { or } h\left(S_{2}\right)=0 ?
\end{aligned}
$$

Motivation: source transformation

General problem

- Classical: From source S_{1} to S_{2}, both of positive entropy:

$$
\begin{aligned}
& \lim L_{t}\left(x ; S_{1}, S_{2}\right) / t=h\left(S_{1}\right) / h\left(S_{2}\right) . \\
& \Longrightarrow \text { What if } h\left(S_{1}\right)=0 \text { or } h\left(S_{2}\right)=0 ?
\end{aligned}
$$

- Our setting: $h\left(S_{1}\right)>0$ and $S_{2} \in\{$ Sturm, Stern - Brocot $\}$

Motivation: source transformation

General problem

- Classical: From source S_{1} to S_{2}, both of positive entropy:

$$
\begin{aligned}
& \lim L_{t}\left(x ; S_{1}, S_{2}\right) / t=h\left(S_{1}\right) / h\left(S_{2}\right) . \\
& \Longrightarrow \text { What if } h\left(S_{1}\right)=0 \text { or } h\left(S_{2}\right)=0 ?
\end{aligned}
$$

- Our setting: $h\left(S_{1}\right)>0$ and $S_{2} \in\{$ Sturm, Stern - Brocot $\}$
- Almost surely $L / t \rightarrow \infty$. More precise results?
- Can we compare the two sources?

Motivation: source transformation

General problem

- Classical: From source S_{1} to S_{2}, both of positive entropy:

$$
\begin{aligned}
& \lim L_{t}\left(x ; S_{1}, S_{2}\right) / t=h\left(S_{1}\right) / h\left(S_{2}\right) . \\
& \Longrightarrow \text { What if } h\left(S_{1}\right)=0 \text { or } h\left(S_{2}\right)=0 ?
\end{aligned}
$$

- Our setting: $h\left(S_{1}\right)>0$ and $S_{2} \in\{$ Sturm, Stern - Brocot $\}$
- Almost surely $L / t \rightarrow \infty$. More precise results?
- Can we compare the two sources?

Theorem (BCRS' ??)
If S_{1} is the binary source:

- For $S_{2}=$ Sturm, we have $\frac{1}{t} \log k \rightarrow \frac{\log 2}{2}$ for almost every x.
- For $S_{2}=$ Stern - Brocot, we have $\frac{1}{t} \frac{m}{\log m} \rightarrow \frac{6 \log 2}{\pi^{2}}$ in prob.

Our sources

Sturm and Stern-Brocot closely related to continued fractions:

- Continued fractions $x=\left[a_{1}, a_{2}, \ldots\right]$ as an intermediate source.

Our sources

Sturm and Stern-Brocot closely related to continued fractions:

- Continued fractions $x=\left[a_{1}, a_{2}, \ldots\right]$ as an intermediate source.
- For these cases, composing the arrows works (*) :

Our sources

Sturm and Stern-Brocot closely related to continued fractions:

- Continued fractions $x=\left[a_{1}, a_{2}, \ldots\right]$ as an intermediate source.
- For these cases, composing the arrows works (*) :
- For Sturm $\frac{\log k(x, t)}{t} \rightarrow \frac{h(\mathcal{C})}{2} \frac{h(\mathcal{B})}{h(\mathcal{C})}=\frac{\log 2}{2}$ for almost every x.
- For Stern-Brocot $\frac{1}{t} \frac{m(x, t)}{\log m(x, t)} \rightarrow \frac{1}{\log 2} \frac{h(\mathcal{B})}{h(\mathcal{C})}=\frac{6 \log 2}{\pi^{2}}$ in probability.

Plan of the talk

1. Sources of positive entropy
2. Important zero entropy sources
3. Conclusions

First historical results for $h>0$

Theorem (Lochs '64)
The rate of CF-digits per decimal satisfies

$$
\lim _{t \rightarrow \infty} \frac{n_{\mathrm{d}}(x)}{\mathrm{d}}=\frac{6 \log 2 \log 10}{\pi^{2}} \doteq 0.9702701 \ldots
$$

for almost every x.

First historical results for $h>0$

Theorem (Lochs '64)
The rate of CF-digits per decimal satisfies

$$
\lim _{t \rightarrow \infty} \frac{n_{\mathrm{d}}(x)}{\mathrm{d}}=\frac{6 \log 2 \log 10}{\pi^{2}} \doteq 0.9702701 \ldots
$$

for almost every x.
"Example". The first 1000 decimal of π determine exactly 968 partial quotients of π.

First historical results for $h>0$

Theorem (Lochs '64)
The rate of CF-digits per decimal satisfies

$$
\lim _{t \rightarrow \infty} \frac{n_{\mathrm{d}}(x)}{\mathrm{d}}=\frac{6 \log 2 \log 10}{\pi^{2}} \doteq 0.9702701 \ldots
$$

for almost every x.
"Example". The first 1000 decimal of π determine exactly 968 partial quotients of π.

Theorem (Faivre '98)

$$
\operatorname{Pr}\left\{x \in[0,1]: \frac{n_{\mathrm{d}}(x)-\mathrm{d} \times a}{\sigma \sqrt{\mathrm{~d}}} \leq \theta\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\theta} e^{-u^{2} / 2} d u
$$

where $a=\frac{6 \log 2 \log 10}{\pi^{2}}$ is the Lochs' constant, and $\sigma>0$.

Expansions and intervals

- Decimal expansion $x=\left(0 . d_{1} d_{2} \ldots\right)_{10}$

$$
I_{\mathrm{d}}^{\mathcal{D}}(x)=\left[\left(0 \cdot d_{1} \ldots d_{\mathrm{d}}\right)_{10},\left(0 \cdot d_{1} \ldots d_{\mathrm{d}}\right)_{10}+10^{-\mathrm{d}}\right]
$$

Expansions and intervals

- Decimal expansion $x=\left(0 . d_{1} d_{2} \ldots\right)_{10}$

$$
I_{\mathrm{d}}^{\mathcal{D}}(x)=\left[\left(0 . d_{1} \ldots d_{\mathrm{d}}\right)_{10},\left(0 . d_{1} \ldots d_{\mathrm{d}}\right)_{10}+10^{-\mathrm{d}}\right] .
$$

- Continued fraction expansion $x=\left[a_{1}, a_{2}, \ldots\right]$

$$
I_{n}^{\mathcal{C}}(x)=\left[\left[a_{1}, \ldots, a_{n}, 1\right],\left[a_{1}, \ldots, a_{n}, 0\right]\right]=\left[\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}, \frac{p_{n}}{q_{n}}\right]
$$

where $\left[a_{1}, \ldots, a_{n}\right]=p_{n} / q_{n}$ is the reduced fraction.

Expansions and intervals

- Decimal expansion $x=\left(0 . d_{1} d_{2} \ldots\right)_{10}$

$$
I_{\mathrm{d}}^{\mathcal{D}}(x)=\left[\left(0 . d_{1} \ldots d_{\mathrm{d}}\right)_{10},\left(0 . d_{1} \ldots d_{\mathrm{d}}\right)_{10}+10^{-\mathrm{d}}\right]
$$

- Continued fraction expansion $x=\left[a_{1}, a_{2}, \ldots\right]$

$$
I_{n}^{\mathcal{C}}(x)=\left[\left[a_{1}, \ldots, a_{n}, 1\right],\left[a_{1}, \ldots, a_{n}, 0\right]\right]=\left[\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}, \frac{p_{n}}{q_{n}}\right]
$$

where $\left[a_{1}, \ldots, a_{n}\right]=p_{n} / q_{n}$ is the reduced fraction.
Characterization of $n_{\mathrm{d}}(x)$

$$
n_{\mathrm{d}}(x)=\max \left\{n \geq 0: I_{\mathrm{d}}^{\mathcal{D}}(x) \subset I_{n}^{\mathcal{C}}(x)\right\}
$$

Expansions and intervals

- Decimal expansion $x=\left(0 . d_{1} d_{2} \ldots\right)_{10}$

$$
I_{\mathrm{d}}^{\mathcal{D}}(x)=\left[\left(0 \cdot d_{1} \ldots d_{\mathrm{d}}\right)_{10},\left(0 \cdot d_{1} \ldots d_{\mathrm{d}}\right)_{10}+10^{-\mathrm{d}}\right]
$$

- Continued fraction expansion $x=\left[a_{1}, a_{2}, \ldots\right]$

$$
I_{n}^{\mathcal{C}}(x)=\left[\left[a_{1}, \ldots, a_{n}, 1\right],\left[a_{1}, \ldots, a_{n}, 0\right]\right]=\left[\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}, \frac{p_{n}}{q_{n}}\right]
$$

where $\left[a_{1}, \ldots, a_{n}\right]=p_{n} / q_{n}$ is the reduced fraction.
Characterization of $n_{\mathrm{d}}(x)$

$$
n_{\mathrm{d}}(x)=\max \left\{n \geq 0: I_{\mathrm{d}}^{\mathcal{D}}(x) \subset I_{n}^{\mathcal{C}}(x)\right\}
$$

Lochs' Theorem inuitions:

Expansions and intervals

- Decimal expansion $x=\left(0 . d_{1} d_{2} \ldots\right)_{10}$

$$
I_{\mathrm{d}}^{\mathcal{D}}(x)=\left[\left(0 \cdot d_{1} \ldots d_{\mathrm{d}}\right)_{10},\left(0 \cdot d_{1} \ldots d_{\mathrm{d}}\right)_{10}+10^{-\mathrm{d}}\right]
$$

- Continued fraction expansion $x=\left[a_{1}, a_{2}, \ldots\right]$

$$
I_{n}^{\mathcal{C}}(x)=\left[\left[a_{1}, \ldots, a_{n}, 1\right],\left[a_{1}, \ldots, a_{n}, 0\right]\right]=\left[\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}, \frac{p_{n}}{q_{n}}\right]
$$

where $\left[a_{1}, \ldots, a_{n}\right]=p_{n} / q_{n}$ is the reduced fraction.
Characterization of $n_{\mathrm{d}}(x)$

$$
n_{\mathrm{d}}(x)=\max \left\{n \geq 0: I_{\mathrm{d}}^{\mathcal{D}}(x) \subset I_{n}^{\mathcal{C}}(x)\right\}
$$

Lochs' Theorem inuitions:

- Length: $\left|I_{\mathrm{d}}^{\mathcal{D}}(x)\right|=10^{-\mathrm{d}},\left|I_{n}^{\mathcal{C}}(x)\right|=\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)}$

Expansions and intervals

- Decimal expansion $x=\left(0 . d_{1} d_{2} \ldots\right)_{10}$

$$
I_{\mathrm{d}}^{\mathcal{D}}(x)=\left[\left(0 . d_{1} \ldots d_{\mathrm{d}}\right)_{10},\left(0 . d_{1} \ldots d_{\mathrm{d}}\right)_{10}+10^{-\mathrm{d}}\right]
$$

- Continued fraction expansion $x=\left[a_{1}, a_{2}, \ldots\right]$

$$
I_{n}^{\mathcal{C}}(x)=\left[\left[a_{1}, \ldots, a_{n}, 1\right],\left[a_{1}, \ldots, a_{n}, 0\right]\right]=\left[\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}, \frac{p_{n}}{q_{n}}\right]
$$

where $\left[a_{1}, \ldots, a_{n}\right]=p_{n} / q_{n}$ is the reduced fraction.
Characterization of $n_{\mathrm{d}}(x)$

$$
n_{\mathrm{d}}(x)=\max \left\{n \geq 0: I_{\mathrm{d}}^{\mathcal{D}}(x) \subset I_{n}^{\mathcal{C}}(x)\right\}
$$

Lochs' Theorem inuitions:

- Length: $\left|I_{\mathrm{d}}^{\mathcal{D}}(x)\right|=10^{-\mathrm{d}},\left|I_{n}^{\mathcal{C}}(x)\right|=\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)}$
- Typical continuants: $\log q_{n}(x) \sim \frac{\pi^{2}}{12 \log 2} n$, Levy's constant.

Expansions and intervals

- Decimal expansion $x=\left(0 . d_{1} d_{2} \ldots\right)_{10}$

$$
I_{\mathrm{d}}^{\mathcal{D}}(x)=\left[\left(0 . d_{1} \ldots d_{\mathrm{d}}\right)_{10},\left(0 \cdot d_{1} \ldots d_{\mathrm{d}}\right)_{10}+10^{-\mathrm{d}}\right]
$$

- Continued fraction expansion $x=\left[a_{1}, a_{2}, \ldots\right]$

$$
I_{n}^{\mathcal{C}}(x)=\left[\left[a_{1}, \ldots, a_{n}, 1\right],\left[a_{1}, \ldots, a_{n}, 0\right]\right]=\left[\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}, \frac{p_{n}}{q_{n}}\right]
$$

where $\left[a_{1}, \ldots, a_{n}\right]=p_{n} / q_{n}$ is the reduced fraction.
Characterization of $n_{\mathrm{d}}(x)$

$$
n_{\mathrm{d}}(x)=\max \left\{n \geq 0: I_{\mathrm{d}}^{\mathcal{D}}(x) \subset I_{n}^{\mathcal{C}}(x)\right\}
$$

Lochs' Theorem inuitions:

- Length: $\left|I_{\mathrm{d}}^{\mathcal{D}}(x)\right|=10^{-\mathrm{d}},\left|I_{n}^{\mathcal{C}}(x)\right|=\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)}$
- Typical continuants: $\log q_{n}(x) \sim \frac{\pi^{2}}{12 \log 2} n$, Levy's constant.
- Take log of lengths: $-\log \left|I_{\mathrm{d}}^{\mathcal{D}}(x)\right| \approx-\log \left|I_{n}^{\mathcal{C}}(x)\right|$

Intervals: sources and partitions

Definition (System of partitions)
Sequence of topological partitions $\mathcal{P}=\left(\mathcal{P}_{n}\right)$ of $[0,1]$

- \mathcal{P}_{n+1} refinement of \mathcal{P}_{n} for every n.
- $\left\|\mathcal{P}_{n}\right\|=\sup \left\{\operatorname{diam}(I): I \in \mathcal{P}_{n}\right\}$ tends to 0 .

Intervals: sources and partitions

Definition (System of partitions)
Sequence of topological partitions $\mathcal{P}=\left(\mathcal{P}_{n}\right)$ of $[0,1]$

- \mathcal{P}_{n+1} refinement of \mathcal{P}_{n} for every n.
- $\left\|\mathcal{P}_{n}\right\|=\sup \left\{\operatorname{diam}(I): I \in \mathcal{P}_{n}\right\}$ tends to 0 .

Systems of partitions define sources with (a.e.) continuous coding

- labeling functions $\rho_{n}: \mathcal{P}_{n} \rightarrow \mathcal{A}$,
- for $I \in \mathcal{P}_{n-1}, \rho_{n}$ injective over $\left.\mathcal{P}_{n}\right|_{I}:=\left\{J \in \mathcal{P}_{n}, J \cap I \neq \emptyset\right\}$.

Intervals: sources and partitions

Definition (System of partitions)
Sequence of topological partitions $\mathcal{P}=\left(\mathcal{P}_{n}\right)$ of $[0,1]$

- \mathcal{P}_{n+1} refinement of \mathcal{P}_{n} for every n.
- $\left\|\mathcal{P}_{n}\right\|=\sup \left\{\operatorname{diam}(I): I \in \mathcal{P}_{n}\right\}$ tends to 0 .

Systems of partitions define sources with (a.e.) continuous coding

- labeling functions $\rho_{n}: \mathcal{P}_{n} \rightarrow \mathcal{A}$,
- for $I \in \mathcal{P}_{n-1}, \rho_{n}$ injective over $\left.\mathcal{P}_{n}\right|_{I}:=\left\{J \in \mathcal{P}_{n}, J \cap I \neq \emptyset\right\}$.
- notation $I_{n}^{\mathcal{P}}(x)=I \in \mathcal{P}_{n}$ such that $x \in I$

Intervals: sources and partitions

Definition (System of partitions)
Sequence of topological partitions $\mathcal{P}=\left(\mathcal{P}_{n}\right)$ of $[0,1]$

- \mathcal{P}_{n+1} refinement of \mathcal{P}_{n} for every n.
- $\left\|\mathcal{P}_{n}\right\|=\sup \left\{\operatorname{diam}(I): I \in \mathcal{P}_{n}\right\}$ tends to 0 .

Systems of partitions define sources with (a.e.) continuous coding

- labeling functions $\rho_{n}: \mathcal{P}_{n} \rightarrow \mathcal{A}$,
- for $I \in \mathcal{P}_{n-1}, \rho_{n}$ injective over $\left.\mathcal{P}_{n}\right|_{I}:=\left\{J \in \mathcal{P}_{n}, J \cap I \neq \emptyset\right\}$.
- notation $I_{n}^{\mathcal{P}}(x)=I \in \mathcal{P}_{n}$ such that $x \in I$
unique coding $\varphi: x \mapsto\left(d_{1} d_{2} \ldots\right)_{\mathcal{P}}$ with $d_{n}=\rho_{n}\left(I_{n}^{\mathcal{P}}(x)\right)$.

Entropy of a partition

Entropy dictates size of intervals

- Shannon entropy ${ }^{1}$:

$$
H(\mathcal{P})=-\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{I \in \mathcal{P}_{k}}|I| \log |I|
$$

- Point-wise: for almost every x

$$
h(\mathcal{P})=-\lim _{k \rightarrow \infty} \frac{1}{k} \log \left|I_{k}^{\mathcal{P}}(x)\right| .
$$

${ }^{1}$ We only consider Lebesgue measure here.

Entropy of a partition

Entropy dictates size of intervals

- Shannon entropy ${ }^{1}$:

$$
H(\mathcal{P})=-\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{I \in \mathcal{P}_{k}}|I| \log |I|
$$

- Point-wise: for almost every x

$$
h(\mathcal{P})=-\lim _{k \rightarrow \infty} \frac{1}{k} \log \left|I_{k}^{\mathcal{P}}(x)\right| .
$$

Point-wise to Shannon

$$
H(\mathcal{P})=\lim _{k \rightarrow \infty} \mathbb{E}\left[-\frac{1}{k} \log \left|I_{k}^{\mathcal{P}}(x)\right|\right]
$$

${ }^{1}$ We only consider Lebesgue measure here.

Entropy of a partition

Entropy dictates size of intervals

- Shannon entropy ${ }^{1}$:

$$
H(\mathcal{P})=-\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{I \in \mathcal{P}_{k}}|I| \log |I|
$$

- Point-wise: for almost every x

$$
h(\mathcal{P})=-\lim _{k \rightarrow \infty} \frac{1}{k} \log \left|I_{k}^{\mathcal{P}}(x)\right| .
$$

Point-wise to Shannon

$$
H(\mathcal{P})=\lim _{k \rightarrow \infty} \mathbb{E}\left[-\frac{1}{k} \log \left|I_{k}^{\mathcal{P}}(x)\right|\right]
$$

Notation. For associated source: $I_{n}^{\mathcal{S}}(x), H(\mathcal{S})$ and $h(\mathcal{S})$.
${ }^{1}$ We only consider Lebesgue measure here.

Generalization Lochs': positive entropy

Lochs' index for sources $\mathcal{S}^{1}, \mathcal{S}^{2}$

$$
L_{n}\left(x ; \mathcal{S}^{1}, \mathcal{S}^{2}\right):=\max \left\{m \geq 0: I_{n}^{\mathcal{S}^{1}}(x) \subset I_{m}^{\mathcal{S}^{2}}(x)\right\}
$$

number of digits of \mathcal{S}^{2} deduced from n digits from \mathcal{S}^{1}.

Generalization Lochs': positive entropy

Lochs' index for sources $\mathcal{S}^{1}, \mathcal{S}^{2}$

$$
L_{n}\left(x ; \mathcal{S}^{1}, \mathcal{S}^{2}\right):=\max \left\{m \geq 0: I_{n}^{\mathcal{S}^{1}}(x) \subset I_{m}^{\mathcal{S}^{2}}(x)\right\}
$$

number of digits of \mathcal{S}^{2} deduced from n digits from \mathcal{S}^{1}.
Theorem (Dajani, Fieldsteel, 2001)
Consider sources \mathcal{S}^{1} and \mathcal{S}^{2}, with defined and positive point-wise entropies $h\left(\mathcal{S}^{1}\right)$ and $h\left(\mathcal{S}^{2}\right)$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} L_{n}\left(x ; \mathcal{S}^{1}, \mathcal{S}^{2}\right)=\frac{h\left(\mathcal{S}^{1}\right)}{h\left(\mathcal{S}^{2}\right)}
$$

for a.e. x.

Generalization Lochs': positive entropy

Lochs' index for sources $\mathcal{S}^{1}, \mathcal{S}^{2}$

$$
L_{n}\left(x ; \mathcal{S}^{1}, \mathcal{S}^{2}\right):=\max \left\{m \geq 0: I_{n}^{\mathcal{S}^{1}}(x) \subset I_{m}^{\mathcal{S}^{2}}(x)\right\}
$$

number of digits of \mathcal{S}^{2} deduced from n digits from \mathcal{S}^{1}.
Theorem (Dajani, Fieldsteel, 2001)
Consider sources \mathcal{S}^{1} and \mathcal{S}^{2}, with defined and positive point-wise entropies $h\left(\mathcal{S}^{1}\right)$ and $h\left(\mathcal{S}^{2}\right)$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} L_{n}\left(x ; \mathcal{S}^{1}, \mathcal{S}^{2}\right)=\frac{h\left(\mathcal{S}^{1}\right)}{h\left(\mathcal{S}^{2}\right)}
$$

for a.e. x.

- Binary. Since $\left|I_{t}^{\mathcal{B}}(x)\right|=2^{-t}, h(\mathcal{B})=\log 2$.
- Continued fractions. Intervals satisfy $\left|I_{k}^{\mathcal{C}}(x)\right|=\Theta\left(\left(q_{k}(x)\right)^{-2}\right)$

$$
h(\mathcal{C})=2 \lim _{k \rightarrow \infty} \frac{1}{k} \log q_{k}(x)=\frac{\pi^{2}}{6 \log 2}
$$

Existence of point-wise entropy

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a probability space $(\Omega, \mathcal{B}, \mu)$ and let P be a finite or countable generating partition for T for which $H_{\mu}(P)<\infty$. Then for μ-a.e. x,

$$
\lim _{n \rightarrow \infty}-\frac{\log \mu\left(P_{n}(x)\right)}{n}=h_{\mu}(T)
$$

Here $H_{\mu}(P)$ denotes the entropy of the partition $P, h_{\mu}(T)$ the entropy of T and $P_{n}(x)$ denotes the element of the partition $\bigvee_{i=0}^{n-1} T^{-i} P$ containing x.

Existence of point-wise entropy

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a probability space $(\Omega, \mathcal{B}, \mu)$ and let P be a finite or countable generating partition for T for which $H_{\mu}(P)<\infty$. Then for μ-a.e. x,

$$
\lim _{n \rightarrow \infty}-\frac{\log \mu\left(P_{n}(x)\right)}{n}=h_{\mu}(T)
$$

Here $H_{\mu}(P)$ denotes the entropy of the partition $P, h_{\mu}(T)$ the entropy of T and $P_{n}(x)$ denotes the element of the partition $\bigvee_{i=0}^{n-1} T^{-i} P$ containing x.

We recall that

$$
h_{\mu}(T)=\sup \left\{h_{\mu}(T, \mathcal{A}): \mathcal{A} \text { countable partition of } X\right\},
$$

and

$$
h_{\mu}(T, \mathcal{A})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\mathcal{A}(U), \mathcal{A}(T U), \ldots, \mathcal{A}\left(T^{n-1} U\right)\right)
$$

where U is distributed according to μ.

Our zero entropy sources

Farey partition (Sturm source) and Stern-Brocot partition built by splitting intervals at mediant

$$
\operatorname{mediant}(a / b, c / d):=(a+b) /(c+d)
$$

Our zero entropy sources

Farey partition (Sturm source) and Stern-Brocot partition built by splitting intervals at mediant

$$
\operatorname{mediant}(a / b, c / d):=(a+b) /(c+d)
$$

Farey partition \mathcal{F}_{k} :
Stern-Brocot partition $\mathcal{S B}_{m}$:

- Base case: $\mathcal{F}_{0}=\{[0,1]\}$.
- Building \mathcal{F}_{k} :
split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{k-1}$,
if $b+d \leq k+1$.
- Base case: $\mathcal{S B}_{0}=\{[0,1]\}$.
- Building $\mathcal{S B}_{m}$: split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{S B}_{m-1}$ always.

Our zero entropy sources

Farey partition (Sturm source) and Stern-Brocot partition built by splitting intervals at mediant

$$
\operatorname{mediant}(a / b, c / d):=(a+b) /(c+d)
$$

Farey partition \mathcal{F}_{k} : Stern-Brocot partition $\mathcal{S B}_{m}$:

- Base case: $\mathcal{F}_{0}=\{[0,1]\}$.
- Building \mathcal{F}_{k} :
split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{k-1}$, if $b+d \leq k+1$.
- Base case: $\mathcal{S B}_{0}=\{[0,1]\}$.
- Building $\mathcal{S B}_{m}$: split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{S B}_{m-1}$ always.

Our zero entropy sources

Farey partition (Sturm source) and Stern-Brocot partition built by splitting intervals at mediant

$$
\operatorname{mediant}(a / b, c / d):=(a+b) /(c+d)
$$

Farey partition \mathcal{F}_{k} : Stern-Brocot partition $\mathcal{S B}_{m}$:

- Base case: $\mathcal{F}_{0}=\{[0,1]\}$.
- Building \mathcal{F}_{k} :
split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{k-1}$, if $b+d \leq k+1$.
- Base case: $\mathcal{S B}_{0}=\{[0,1]\}$.
- Building $\mathcal{S B}_{m}$: split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{S B}_{m-1}$ always.

Farey,Stern-Brocot and Continued Fractions

Farey partition \mathcal{F}_{k} :
$\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{k-1}, b+d \leq k+1$
$\Rightarrow\left[\frac{a}{b}, \frac{a+c}{b+d}\right],\left[\frac{a+c}{b+d}, \frac{c}{d}\right] \in \mathcal{F}_{k}$

Stern-Brocot partition $\mathcal{S B}_{m}$:

$$
\begin{gathered}
{\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{S B}_{m-1}} \\
\Rightarrow\left[\frac{a}{b}, \frac{a+c}{b+d}\right],\left[\frac{a+c}{b+d}, \frac{c}{d}\right] \in \mathcal{S B}_{m}
\end{gathered}
$$

Farey,Stern-Brocot and Continued Fractions

Farey partition \mathcal{F}_{k} :

$\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{k-1}, b+d \leq k+1$
$\Rightarrow\left[\frac{a}{b}, \frac{a+c}{b+d}\right],\left[\frac{a+c}{b+d}, \frac{c}{d}\right] \in \mathcal{F}_{k}$

Stern-Brocot partition $\mathcal{S B}_{m}$:

$$
\begin{gathered}
{\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{S B}_{m-1}} \\
\Rightarrow\left[\frac{a}{b}, \frac{a+c}{b+d}\right],\left[\frac{a+c}{b+d}, \frac{c}{d}\right] \in \mathcal{S B}_{m}
\end{gathered}
$$

Related to continued fractions. Mediants of $x \in\left[\frac{p_{n-1}}{q_{n-1}}, \frac{p_{n}}{q_{n}}\right]$, yield ${ }^{2}$

$$
\frac{p_{n-1}}{q_{n-1}} \leq \frac{p_{n-1}+p_{n}}{q_{n-1}+q_{n}} \leq \ldots \leq \frac{p_{n-1}+r p_{n}}{q_{n-1}+r q_{n}} \leq x \leq \frac{p_{n}}{q_{n}}
$$

${ }^{2}$ We keep only the interval containing x.

Farey,Stern-Brocot and Continued Fractions

Farey partition \mathcal{F}_{k} :

$\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{k-1}, b+d \leq k+1$
$\Rightarrow\left[\frac{a}{b}, \frac{a+c}{b+d}\right],\left[\frac{a+c}{b+d}, \frac{c}{d}\right] \in \mathcal{F}_{k}$

Stern-Brocot partition $\mathcal{S B}_{m}$:

$$
\begin{gathered}
{\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{S B}_{m-1}} \\
\Rightarrow\left[\frac{a}{b}, \frac{a+c}{b+d}\right],\left[\frac{a+c}{b+d}, \frac{c}{d}\right] \in \mathcal{S B}_{m}
\end{gathered}
$$

Related to continued fractions. Mediants of $x \in\left[\frac{p_{n-1}}{q_{n-1}}, \frac{p_{n}}{q_{n}}\right]$, yield ${ }^{2}$

$$
\frac{p_{n-1}}{q_{n-1}} \leq \frac{p_{n-1}+p_{n}}{q_{n-1}+q_{n}} \leq \ldots \leq \frac{p_{n-1}+r p_{n}}{q_{n-1}+r q_{n}} \leq x \leq \frac{p_{n}}{q_{n}}
$$

the quotient a_{n+1} giving largest $r \geq 1$ such that $\frac{p_{n-1}+r p_{n}}{q_{n-1}+r q_{n}}=\frac{p_{n+1}}{q_{n+1}} \leq x$.

[^0]
Farey,Stern-Brocot and Continued Fractions

Farey partition \mathcal{F}_{k} :
$\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{k-1}, b+d \leq k+1$
$\Rightarrow\left[\frac{a}{b}, \frac{a+c}{b+d}\right],\left[\frac{a+c}{b+d}, \frac{c}{d}\right] \in \mathcal{F}_{k}$

Stern-Brocot partition $\mathcal{S B}_{m}$:

$$
\begin{gathered}
{\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{S B}_{m-1}} \\
\Rightarrow\left[\frac{a}{b}, \frac{a+c}{b+d}\right],\left[\frac{a+c}{b+d}, \frac{c}{d}\right] \in \mathcal{S B}_{m}
\end{gathered}
$$

Related to continued fractions. Mediants of $x \in\left[\frac{p_{n-1}}{q_{n-1}}, \frac{p_{n}}{q_{n}}\right]$, yield

$$
\frac{p_{n-1}}{q_{n-1}} \leq \frac{p_{n-1}+p_{n}}{q_{n-1}+q_{n}} \leq \ldots \leq \frac{p_{n-1}+r p_{n}}{q_{n-1}+r q_{n}} \leq x \leq \frac{p_{n}}{q_{n}}
$$

the quotient a_{n+1} giving largest $r \geq 1$ such that $\frac{p_{n-1}+r p_{n}}{q_{n-1}+r q_{n}}=\frac{p_{n+1}}{q_{n+1}} \leq x$.
Lemma
Let $I_{r, n}=\left[\frac{p_{n-1}+r p_{n}}{q_{n-1}+r q_{n}}, \frac{p_{n}}{q_{n}}\right], 0 \leq r<a_{n+1}$:

- For Farey: $q_{n-1}+r q_{n} \leq k+1<q_{n-1}+(r+1) q_{n}, I_{r, n}=I_{k}^{\mathcal{F}}(x)$.
- For Stern-Brocot: $m=a_{1}+\ldots+a_{n}+r, I_{r+1, n}=I_{m}^{\mathcal{S B}}(x)$.

Farey partition

Farey partition \mathcal{F}_{k} :

- Base case: $\mathcal{F}_{0}=\{[0,1]\}$.
- Building \mathcal{F}_{k} : split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{k-1}$ at mediant $\frac{a+c}{b+d}$, if $b+d \leq k+1$.

$\mathcal{F}_{0}: 0 / 1$					1/1
\mathcal{F}_{1} :	1/2				
\mathcal{F}_{2} :	1/3		2/3		
\mathcal{F}_{3} :	1/4				
\mathcal{F}_{4} :	1/5	2/5	3/5	4/5	

Properties:

- \mathcal{F}_{k} determines char. Sturmian word up to $(k-1)$-th symbol.
- The end-points \mathcal{F}_{k} are exactly $\left\{\frac{a}{b} \in \mathbb{Q}: 0 \leq a \leq b \leq k+1\right\}$.
- Small number: $\Theta\left(k^{2}\right)$ intervals in \mathcal{F}_{k}

Farey partition

Farey partition \mathcal{F}_{k} :

- Base case: $\mathcal{F}_{0}=\{[0,1]\}$.
- Building \mathcal{F}_{k} : split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{F}_{k-1}$ at mediant $\frac{a+c}{b+d}$, if $b+d \leq k+1$.

$\mathcal{F}_{0}: 0 / 1$					1/1
\mathcal{F}_{1} :	1/2				
\mathcal{F}_{2} :	1/3		2/3		
\mathcal{F}_{3} :	1/4				
\mathcal{F}_{4} :	1/5	2/5	3/5	4/5	

Properties:

- \mathcal{F}_{k} determines char. Sturmian word up to $(k-1)$-th symbol.
- The end-points \mathcal{F}_{k} are exactly $\left\{\frac{a}{b} \in \mathbb{Q}: 0 \leq a \leq b \leq k+1\right\}$.
- Small number: $\Theta\left(k^{2}\right)$ intervals in $\mathcal{F}_{k} \Rightarrow$ entropy 0 .

Binary to Farey

Theorem (Lochs' index of Farey)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log L_{n}(x ; \mathcal{B}, \mathcal{F})=\frac{\log 2}{2}
$$

Binary to Farey

Theorem (Lochs' index of Farey)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log L_{n}(x ; \mathcal{B}, \mathcal{F})=\frac{\log 2}{2}
$$

Farey intervals have comparable size:
Lemma (Entropy of Farey)
For almost every x, for large $k \geq k_{0}(x)$

$$
\frac{1}{k^{2}} \leq\left|I_{k}^{\mathcal{F}}(x)\right| \leq \frac{(\log k)(\log \log k)}{k^{2}}
$$

Binary to Farey

Theorem (Lochs' index of Farey)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log L_{n}(x ; \mathcal{B}, \mathcal{F})=\frac{\log 2}{2} .
$$

Farey intervals have comparable size:
Lemma (Entropy of Farey)
For almost every x, for large $k \geq k_{0}(x)$

$$
\frac{1}{k^{2}} \leq\left|I_{k}^{\mathcal{F}}(x)\right| \leq \frac{(\log k)(\log \log k)}{k^{2}}
$$

Figure. Histogram of interval sizes for $k=20$.
$\frac{1}{20^{2}}=0.0025, \frac{1}{20}=0.05$.

Binary to Farey

Theorem (Lochs' index of Farey)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log L_{n}(x ; \mathcal{B}, \mathcal{F})=\frac{\log 2}{2}
$$

Farey intervals have comparable size:
Lemma (Entropy of Farey)
For almost every x, for large $k \geq k_{0}(x)$

$$
\frac{1}{k^{2}} \leq\left|I_{k}^{\mathcal{F}}(x)\right| \leq \frac{(\log k)(\log \log k)}{k^{2}}
$$

Hand-waving argument: compare sizes

$$
-\log \left|I_{k}^{\mathcal{F}}(x)\right| \sim 2 \log k, \quad-\log \left|I_{n}^{\mathcal{B}}\right|=(\log 2) n
$$

Formal argument

Two steps: lower limit and upper limit.

Formal argument

Two steps: lower limit and upper limit.

- Intermediate source $\mathcal{B} \rightarrow \mathcal{C} \rightarrow \mathcal{F}$.
"Triangle" inequality for transformation $\mathcal{S}^{1} \rightarrow \mathcal{S}^{2} \rightarrow \mathcal{S}^{3}$

$$
\begin{aligned}
& L_{j_{n}(x)}\left(x ; \mathcal{S}^{2}, \mathcal{S}^{3}\right) \leq L_{n}\left(x ; \mathcal{S}^{1}, \mathcal{S}^{3}\right), \\
& j_{n}(x):=L_{n}\left(x ; \mathcal{S}^{1}, \mathcal{S}^{2}\right)
\end{aligned}
$$

Formal argument

Two steps: lower limit and upper limit.

- Intermediate source $\mathcal{B} \rightarrow \mathcal{C} \rightarrow \mathcal{F}$.
"Triangle" inequality for transformation $\mathcal{S}^{1} \rightarrow \mathcal{S}^{2} \rightarrow \mathcal{S}^{3}$

$$
\begin{aligned}
& L_{j_{n}(x)}\left(x ; \mathcal{S}^{2}, \mathcal{S}^{3}\right) \leq L_{n}\left(x ; \mathcal{S}^{1}, \mathcal{S}^{3}\right) \\
& j_{n}(x):=L_{n}\left(x ; \mathcal{S}^{1}, \mathcal{S}^{2}\right)
\end{aligned}
$$

- Upper limit follows from comparing sizes:

$$
I_{n}^{\mathcal{B}}(x) \text { too big for } I_{k}^{\mathcal{F}}(x)
$$

when $k=2^{n / 2(1+\varepsilon)}$.

Stern-Brocot partition

Stern-Brocot partition $\mathcal{S B}_{m}$:

- Base case: $\mathcal{S B}_{0}=\{[0,1]\}$.
- Building $\mathcal{S B}_{m}$: split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{S B}_{m-1}$ always.

Stern-Brocot partition

Stern-Brocot partition $\mathcal{S B}_{m}$:

- Base case: $\mathcal{S B}_{0}=\{[0,1]\}$.
- Building $\mathcal{S B}_{m}$: split $\left[\frac{a}{b}, \frac{c}{d}\right] \in \mathcal{S B}_{m-1}$ always.

$\mathcal{S B}_{0}: 0 / 1$							1/1
$\mathcal{S B}_{1}$:	1/2						
$\mathcal{S B}_{2}$:	1/3			2/3			
$\begin{aligned} & \mathcal{S B}_{3}: \\ & \mathcal{S B}_{4}: \end{aligned}$	1/4		2/5	3/5	3/4		
	1/5	2/7	$3 / 8: 3 / 7$	4/7 7 5/8	5/7	4/5	
	$\dot{\square}$		\checkmark	.		2	\checkmark

Associated to binary encoding of continued fractions:

$$
\left[a_{1}, a_{2}, \ldots\right] \mapsto\left[0^{a_{1}-1}, 1,0^{a_{2}-1}, 1, \ldots\right]
$$

which follows construction of CFs by mediants.

Binary to Stern-Brocot

Theorem
$\lim _{t \rightarrow \infty} \frac{1}{t} \frac{m}{\log m}=\frac{6 \log 2}{\pi^{2}}$ in probability, where $m=L_{t}(x ; \mathcal{B}, \mathcal{S B})$.

Binary to Stern-Brocot

Theorem
$\lim _{t \rightarrow \infty} \frac{1}{t} \frac{m}{\log m}=\frac{6 \log 2}{\pi^{2}}$ in probability, where $m=L_{t}(x ; \mathcal{B}, \mathcal{S B})$.

Lemma
If $n=n_{t}(x):=L_{t}(x ; \mathcal{B}, \mathcal{C})$, then

$$
\sum_{i=1}^{n} a_{i}(x) \leq m_{t}(x)<\sum_{i=1}^{n+1} a_{i}(x) .
$$

Binary to Stern-Brocot

Theorem
$\lim _{t \rightarrow \infty} \frac{1}{t} \frac{m}{\log m}=\frac{6 \log 2}{\pi^{2}}$ in probability, where $m=L_{t}(x ; \mathcal{B}, \mathcal{S B})$.
Lemma
If $n=n_{t}(x):=L_{t}(x ; \mathcal{B}, \mathcal{C})$, then

$$
\sum_{i=1}^{n} a_{i}(x) \leq m_{t}(x)<\sum_{i=1}^{n+1} a_{i}(x)
$$

Proof.

Recall: depth is number of mediants taken $m=a_{1}+\ldots+a_{n}+r$.

Binary to Stern-Brocot

Theorem
$\lim _{t \rightarrow \infty} \frac{1}{t} \frac{m}{\log m}=\frac{6 \log 2}{\pi^{2}}$ in probability, where $m=L_{t}(x ; \mathcal{B}, \mathcal{S B})$.
Lemma
If $n=n_{t}(x):=L_{t}(x ; \mathcal{B}, \mathcal{C})$, then

$$
\sum_{i=1}^{n} a_{i}(x) \leq m_{t}(x)<\sum_{i=1}^{n+1} a_{i}(x) .
$$

Proof.

Recall: depth is number of mediants taken $m=a_{1}+\ldots+a_{n}+r$.
Theorem (Khinchin, 35)
In probability $\lim _{n \rightarrow \infty} \frac{1}{n \log n} \sum_{i=1}^{n} a_{i}(x)=\frac{1}{\log 2}$.

Binary to Stern-Brocot

Theorem
$\lim _{t \rightarrow \infty} \frac{1}{t} \frac{m}{\log m}=\frac{6 \log 2}{\pi^{2}}$ in probability, where $m=L_{t}(x ; \mathcal{B}, \mathcal{S B})$.
Lemma
If $n=n_{t}(x):=L_{t}(x ; \mathcal{B}, \mathcal{C})$, then

$$
\sum_{i=1}^{n} a_{i}(x) \leq m_{t}(x)<\sum_{i=1}^{n+1} a_{i}(x) .
$$

Proof.

Recall: depth is number of mediants taken $m=a_{1}+\ldots+a_{n}+r$.
Theorem (Khinchin, 35)
In probability $\lim _{n \rightarrow \infty} \frac{1}{n \log n} \sum_{i=1}^{n} a_{i}(x)=\frac{1}{\log 2}$.

Proof sketch for Stern-Brocot.

To use Khinchin, we use concentration [Faivre98] of $n=L_{t}(x ; \mathcal{B}, \mathcal{C})$.

Sums of partial quotients: why in probability?

Lemma

With probability 1, for $\epsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{1}{n(\log n)^{1+\epsilon}} \sum_{i=1}^{n} a_{i}(x)=0, \limsup _{n \rightarrow \infty} \frac{1}{n \log n} \sum_{i=1}^{n} a_{i}(x)=\infty
$$

Sums of partial quotients: why in probability?

Lemma
With probability 1, for $\epsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{1}{n(\log n)^{1+\epsilon}} \sum_{i=1}^{n} a_{i}(x)=0, \limsup _{n \rightarrow \infty} \frac{1}{n \log n} \sum_{i=1}^{n} a_{i}(x)=\infty
$$

Proof. By Borel-Bernstein. Note $a_{n}(x)>n \log n \log \log n$ occurs an infinite number of times for a.e. x.

Sums of partial quotients: why in probability?

Lemma

With probability 1, for $\epsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{1}{n(\log n)^{1+\epsilon}} \sum_{i=1}^{n} a_{i}(x)=0, \limsup _{n \rightarrow \infty} \frac{1}{n \log n} \sum_{i=1}^{n} a_{i}(x)=\infty
$$

Proof. By Borel-Bernstein. Note $a_{n}(x)>n \log n \log \log n$ occurs an infinite number of times for a.e. x.

Partial sums $\sum_{i=1}^{n} a_{i}(x)$ are regular when we take out $\max a_{i}(x)$
Theorem (Diamond,Vaaler,98)
For large enough $n \geq N_{0}(x)$, there is $0 \leq \vartheta_{+}(n, x) \leq 1$ such that

$$
\sum_{i=1}^{n} a_{i}(x)=\frac{1+o(1)}{\log 2} n \log n+\vartheta_{+}(n, x) \max _{1 \leq i \leq n} a_{i}(x)
$$

Change of basis and tries: intuitions

Set of n words x_{1}, \ldots, x_{n} emitted by $\mathcal{B} \Rightarrow$ Trie depth $t \sim \log _{2} n$
$\left|\begin{array}{l|l}x_{1} & 0100101100 \ldots \\ x_{2} & 0101001101 \ldots \\ x_{3} & 1001101100 \ldots \\ x_{4} & 1010001001 \ldots \\ x_{5} & 1011111000 \ldots\end{array}\right|$

Change of basis and tries: intuitions

Set of n words x_{1}, \ldots, x_{n} emitted by $\mathcal{B} \Rightarrow$ Trie depth $t \sim \log _{2} n$
$\left|\begin{array}{c|c}x_{1} & 0100101100 \ldots \\ x_{2} & 0101001101 \ldots \\ x_{3} & 1001101100 \ldots \\ x_{4} & 1010001001 \ldots \\ x_{5} & 1011111000 \ldots\end{array}\right|$

Then we estimate depth of the tries in our sources:

- k digits from Sturm source with $(1 / t) \log k \sim \frac{\log 2}{2}$,

$$
\log k \sim \log \sqrt{n}
$$

Change of basis and tries: intuitions

Set of n words x_{1}, \ldots, x_{n} emitted by $\mathcal{B} \Rightarrow$ Trie depth $t \sim \log _{2} n$
$\left|\begin{array}{l|l}x_{1} & \mathbf{0 1 0 0 1 0 1 1 0 0 \ldots} \\ x_{2} & \mathbf{0 1 0 1 0 0 1 1 0 1 \ldots} \\ x_{3} & \mathbf{1 0 0 1 1 0 1 1 0 0 \ldots} \\ x_{4} & \mathbf{1 0 1 0 0 0 1 0 0 1 \ldots} \\ x_{5} & \mathbf{1 0 1 1 1 1 1 0 0 0 \ldots}\end{array}\right|$

Then we estimate depth of the tries in our sources:

- k digits from Sturm source with $(1 / t) \log k \sim \frac{\log 2}{2}$,

$$
\log k \sim \log \sqrt{n}
$$

- m digits from Stern-Brocot with $(1 / t) m / \log m \sim \frac{6 \log 2}{\pi^{2}}$

$$
m \approx \frac{6}{\pi^{2}} \log n \log \log n
$$

in probability. Wrong?

Change of basis and tries: intuitions

Set of n words x_{1}, \ldots, x_{n} emitted by $\mathcal{B} \Rightarrow$ Trie depth $t \sim \log _{2} n$
$\left|\begin{array}{l|l}x_{1} & 0100101100 \ldots \\ x_{2} & 0101001101 \ldots \\ x_{3} & 1001101100 \ldots \\ x_{4} & \mathbf{1 0 1 0 0 0 1 0 0 1 \ldots} \\ x_{5} & 1011111000 \ldots\end{array}\right|$

Then we estimate depth of the tries in our sources:

- k digits from Sturm source with $(1 / t) \log k \sim \frac{\log 2}{2}$,

$$
\log k \sim \log \sqrt{n}
$$

- m digits from Stern-Brocot with $(1 / t) m / \log m \sim \frac{6 \log 2}{\pi^{2}}$

$$
m \approx \frac{6}{\pi^{2}} \log n \log \log n
$$

in probability. Wrong? Stern-Brocot intervals very uneven...

Conclusions and further work

We have discussed two sources defined from the mediants
\circledast The Farey partition \mathcal{F}_{k}

- is seemingly irregular by construction, but
- has regular interval lengths $\left|I_{k}^{\mathcal{F}}(x)\right| \approx k^{-2}$ (log "entropy"?)
- number of digits produced from t binary one is exponential.
* The Stern-Brocot partition
- is seemingly more regular, intervals always split yet
- results require convergence in probability
- number of digits produced from t binary is $m \sim t \log t$.

Conclusions and further work

We have discussed two sources defined from the mediants
\circledast The Farey partition \mathcal{F}_{k}

- is seemingly irregular by construction, but
- has regular interval lengths $\left|I_{k}^{\mathcal{F}}(x)\right| \approx k^{-2}$ (log "entropy"?)
- number of digits produced from t binary one is exponential.
* The Stern-Brocot partition
- is seemingly more regular, intervals always split yet
- results require convergence in probability
- number of digits produced from t binary is $m \sim t \log t$.

Questions and further work

1. Coming back from zero entropy to positive entropy is more irregular.

Conclusions and further work

We have discussed two sources defined from the mediants
\circledast The Farey partition \mathcal{F}_{k}

- is seemingly irregular by construction, but
- has regular interval lengths $\left|I_{k}^{\mathcal{F}}(x)\right| \approx k^{-2}$ (log "entropy"?)
- number of digits produced from t binary one is exponential.
$*$ The Stern-Brocot partition
- is seemingly more regular, intervals always split yet
- results require convergence in probability
- number of digits produced from t binary is $m \sim t \log t$.

Questions and further work

1. Coming back from zero entropy to positive entropy is more irregular.
2. General chain rules $\mathcal{S}^{1} \rightarrow \mathcal{S}^{2} \rightarrow \mathcal{S}^{3}$? Partial results.

Conclusions and further work

We have discussed two sources defined from the mediants
\circledast The Farey partition \mathcal{F}_{k}

- is seemingly irregular by construction, but
- has regular interval lengths $\left|I_{k}^{\mathcal{F}}(x)\right| \approx k^{-2}$ (log "entropy"?)
- number of digits produced from t binary one is exponential.
$*$ The Stern-Brocot partition
- is seemingly more regular, intervals always split yet
- results require convergence in probability
- number of digits produced from t binary is $m \sim t \log t$.

Questions and further work

1. Coming back from zero entropy to positive entropy is more irregular.
2. General chain rules $\mathcal{S}^{1} \rightarrow \mathcal{S}^{2} \rightarrow \mathcal{S}^{3}$? Partial results.
3. Get a formal link with trie depth ?

Thank you!

References

围 A．Khintchine，
Metrische kettenbruchprobleme，
Compositio Mathematica1，pp．361－382， 1935.
圊 G．Lochs，
Die ersten 968 Kettenbruchnenner von π ， Monatsh．Math．67，pp．311－316， 1963.
Harold G．Diamond and Jeffrey D．Vaaler， Estimates for partial sums of continued fraction partial quotients， Pacific J．Math．122，no．1，pp 73－82， 1986.
圊 C．Faivre，
A central limit theorem related to decimal and continued fraction expansion，
Arch．Math．（Basel）70，no．6，pp 455－463， 1998.
囯 K．Dajani，and A．Fieldsteel，
Equipartition of Interval Partitions and an Application to Number Theory，
Proceedings of the American Mathematical Society，vol 129，n．12， pp．3453－3460， 2001.

[^0]: ${ }^{2}$ We keep only the interval containing x.

