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Motivation: simulating continued fractions

For computer simulation:

▶ Given t binary digits b1, b2, . . . , bt of x ∈ [0, 1],

x = (0.b1b2 . . .)2 ∈ [0, 1] .

▶ Number n = nt(x) of CFE-digits (partial quotients)
deduced without possibility of error ?

x =
1

a1 +
1

a2 +
. . .

.

Natural to consider the quotient nt(x)/t :

▶ rate of CFE digits per binary digit,

▶ compares relative information/redundancy of expansions.

1 / 28



Motivation: simulating continued fractions

For computer simulation:

▶ Given t binary digits b1, b2, . . . , bt of x ∈ [0, 1],

x = (0.b1b2 . . .)2 ∈ [0, 1] .

▶ Number n = nt(x) of CFE-digits (partial quotients)
deduced without possibility of error ?

x =
1

a1 +
1

a2 +
. . .

.

Natural to consider the quotient nt(x)/t :

▶ rate of CFE digits per binary digit,

▶ compares relative information/redundancy of expansions.

1 / 28



First historical results: Lochs’ Theorem

Theorem (Lochs ’64)

The rate of CF-digits per decimal given satisfies

lim
d→∞

nd(x)

d
=

6 log 2 log 10

π2

.
= 0.9702701 . . . ,

for almost every x.

“Example”. The first 1000 decimals of π determine exactly 968
partial quotients of π.

Theorem (Faivre ’98)

Pr

{
x ∈ [0, 1] :

nd(x)− d× a

σ
√
d

≤ θ

}
→ 1√

2π

∫ θ

−∞
e−u2/2du ,

where a = 6 log 2 log 10
π2 is the Lochs’ constant, and σ > 0.
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Change of basis: a simple example
▶ Given t binary digits b1, b2, . . . , bt ∈ {0, 1} of

x = (0.b1b2 . . .)2 ∈ [0, 1] .

▶ Number n = nt(x) of d-ary digits 0 ≤ d1, . . . , dn < d deduced?

x = (0.d1d2 . . .)d ∈ [0, 1] .

Answer:

▶ For d = 2A we simply obtain

A× nt(x) = t ,

because 1 d-ary digit corresponds to A binary digits.

▶ More generally we expect

log d

log 2
× nt(x) ∼ t ,

one digit in base dB corresponds to one in base 2A when dB ≈ 2A.
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Motivation: source transformation

Classical

▶ Dajani&Fieldsteel’01: From source S1 to S2, both of positive
entropy:

limLt(x;S1, S2)/t = h(S1)/h(S2) ,

where Lt(x;S1, S2) is number of digits in S2 deduced from t in S1.

▶ What if h(S1) = 0 or h(S2) = 0 ?

– If h(S2) = 0 and h(S1) > 0, almost surely L/t → ∞.

– If h(S2) > 0 and h(S1) = 0, almost surely L/t → 0.

Our work

▶ Introduce appropriate notion of renormalized entropy f1, f2,

▶ Generalization: for positive, zero or infinite entropy:

lim f2(Lt(x;S1, S2))/f1(t) = 1 .

4 / 28



Motivation: source transformation

Classical

▶ Dajani&Fieldsteel’01: From source S1 to S2, both of positive
entropy:

limLt(x;S1, S2)/t = h(S1)/h(S2) ,

where Lt(x;S1, S2) is number of digits in S2 deduced from t in S1.

▶ What if h(S1) = 0 or h(S2) = 0 ?

– If h(S2) = 0 and h(S1) > 0, almost surely L/t → ∞.

– If h(S2) > 0 and h(S1) = 0, almost surely L/t → 0.

Our work

▶ Introduce appropriate notion of renormalized entropy f1, f2,

▶ Generalization: for positive, zero or infinite entropy:

lim f2(Lt(x;S1, S2))/f1(t) = 1 .

4 / 28



Motivation: source transformation

Classical

▶ Dajani&Fieldsteel’01: From source S1 to S2, both of positive
entropy:

limLt(x;S1, S2)/t = h(S1)/h(S2) ,

where Lt(x;S1, S2) is number of digits in S2 deduced from t in S1.

▶ What if h(S1) = 0 or h(S2) = 0 ?

– If h(S2) = 0 and h(S1) > 0, almost surely L/t → ∞.

– If h(S2) > 0 and h(S1) = 0, almost surely L/t → 0.

Our work

▶ Introduce appropriate notion of renormalized entropy f1, f2,

▶ Generalization: for positive, zero or infinite entropy:

lim f2(Lt(x;S1, S2))/f1(t) = 1 .

4 / 28



Motivation: source transformation

Classical

▶ Dajani&Fieldsteel’01: From source S1 to S2, both of positive
entropy:

limLt(x;S1, S2)/t = h(S1)/h(S2) ,

where Lt(x;S1, S2) is number of digits in S2 deduced from t in S1.

▶ What if h(S1) = 0 or h(S2) = 0 ?

– If h(S2) = 0 and h(S1) > 0, almost surely L/t → ∞.

– If h(S2) > 0 and h(S1) = 0, almost surely L/t → 0.

Our work

▶ Introduce appropriate notion of renormalized entropy f1, f2,

▶ Generalization: for positive, zero or infinite entropy:

lim f2(Lt(x;S1, S2))/f1(t) = 1 .

4 / 28



Plan of the talk

1. Definitions: partitions, Lochs’ and weight function

2. Statement of main result and discussion

3. Examples of natural zero entropy sources that have weight

4. Concepts for the proof of the main result

5. Conclusions
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Intervals: sources and partitions

Definition (System of interval partitions)

Sequence of topological partitions P = (Pn) of [0, 1]

▶ Pn+1 refinement of Pn for every n.

▶ ∥Pn∥ = sup{diam(I) : I ∈ Pn} tends to 0.

Equivalent to sources

▶ notation IPn (x) = I ∈ Pn such that x ∈ I,

▶ first n symbols for x determine IPn (x) and conversely.

Example. Decimal expansion

Depth n interval for x = (0.d1d2 . . .)10

IDn (x) =
(
(0.d1 . . . dn)10, (0.d1 . . . dn)10 + 10−n

)
,

containing y ∈ (0, 1) having the exact same first n digits as x.
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Entropy of a partition

Entropy dictates size of intervals

▶ Shannon entropy1:

H(P) = − lim
k→∞

1

k

∑
I∈Pk

|I| log |I| .

▶ Point-wise: for almost every x

h(P) = − lim
k→∞

1

k
log

∣∣IPk (x)
∣∣ .

Point-wise to Shannon

H(P) = lim
k→∞

E
[
− 1

k
log

∣∣IPk (x)
∣∣ ] .

1We consider Lebesgue measure here, but any Borel λ works.
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Generalization Lochs’: Lochs’ index

The Lochs’ index

▶ formalizes the notation of deduced digits,

▶ generalizes it to systems of interval partitions.

Lochs’ index for systems of partitions P1,P2

Ln(x;P1,P2) := max{m ≥ 0 : IP
1

n (x) ⊂ IP
2

m (x)} ,

depth in P2 deduced from depth n in P1.

Explanation

If IP
1

n (x) splits over (intersects) several J ∈ P2
m,

=⇒ we cannot yet decide on IP
2

m (x)
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Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions P1 and P2, with positive point-wise
entropies h(P1) and h(P2). Then

lim
n→∞

1

n
Ln(x;P1,P2) =

h(P1)

h(P2)

for a.e. x.

– Base d. Since |IDt (x)| = d−t, h(D) = log d.

– Continued fractions. Intervals satisfy |ICk (x)| = Θ((qk(x))
−2)

h(C) = 2 lim
k→∞

1

k
log qk(x) =

π2

6 log 2
.

=⇒ we deduce Lochs’ Theorem and the result for d-ary basis.

9 / 28



Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions P1 and P2, with positive point-wise
entropies h(P1) and h(P2). Then

lim
n→∞

1

n
Ln(x;P1,P2) =

h(P1)

h(P2)

for a.e. x.

– Base d. Since |IDt (x)| = d−t, h(D) = log d.

– Continued fractions. Intervals satisfy |ICk (x)| = Θ((qk(x))
−2)

h(C) = 2 lim
k→∞

1

k
log qk(x) =

π2

6 log 2
.

=⇒ we deduce Lochs’ Theorem and the result for d-ary basis.

9 / 28



Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions P1 and P2, with positive point-wise
entropies h(P1) and h(P2). Then

lim
n→∞

1

n
Ln(x;P1,P2) =

h(P1)

h(P2)

for a.e. x.

– Base d. Since |IDt (x)| = d−t, h(D) = log d.

– Continued fractions. Intervals satisfy |ICk (x)| = Θ((qk(x))
−2)

h(C) = 2 lim
k→∞

1

k
log qk(x) =

π2

6 log 2
.

=⇒ we deduce Lochs’ Theorem and the result for d-ary basis.

9 / 28



Theorem (Dajani, Fieldsteel, 2001)

Consider systems of partitions P1 and P2, with positive point-wise
entropies h(P1) and h(P2). Then

lim
n→∞

1

n
Ln(x;P1,P2) =

h(P1)

h(P2)

for a.e. x.

– Base d. Since |IDt (x)| = d−t, h(D) = log d.

– Continued fractions. Intervals satisfy |ICk (x)| = Θ((qk(x))
−2)

h(C) = 2 lim
k→∞

1

k
log qk(x) =

π2

6 log 2
.

=⇒ we deduce Lochs’ Theorem and the result for d-ary basis.

9 / 28



Existence of point-wise entropy

Systems of partitions associated with good (positive entropy) dynamical

systems have point-wise entropy:

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a
probability space (Ω,B, µ) and let P be a finite or countable
generating partition for T for which Hµ(P ) < ∞. Then for µ-a.e.
x,

lim
n→∞

− logµ (Pn(x))

n
= hµ(T ) .

Here Hµ(P ) denotes the entropy of the partition P , hµ(T ) the
entropy of T and Pn(x) denotes the element of the partition∨n−1

i=0 T−iP containing x.
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Log-balancedness and weight function

Definition (Weight function)

A system of partitions P = (Pn) is log-balanced a.e. (resp. in
measure) with weight function f : N → R>0, f(n) → ∞, if

− log |IPn (x)| ∼ f(n) ,

almost everywhere (resp. in measure).

Example

▶ For positive entropy h = h(P) > 0

f(n) = h× n .

▶ If partition is log-balanced, entropy 0 corresponds to

f(n) = o(n) .
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Realization result for weight functions

Proposition

Let f : N → R>0 non-decreasing, f(n) → ∞. Then there exists a
log-balanced P with weight function f almost everywhere.

Proof sketch.

Given n, let k = k(n) be such that 2k ≤ exp(f(n)) < 2k+1.

Define

Pn :=

{(
i

2k
,
i+ 1

2k

)
: 0 ≤ i < 2k

}
,

so that |In(x)| = 2−k satisfies e−f(n) ≤ 2−k < 2e−f(n).
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Our main result

Theorem (Berthé,Cesaratto,R.,Safe, 2021+)

Consider systems of partitions P1 and P2, with a.e. weight
functions f1 and f2. Then, under certain technical conditions

lim
n→∞

f2
(
Ln(x;P1,P2)

)
f1(n)

= 1 ,

for a.e. x.

The conditions are:

▶
∑

e−δf1(n) < ∞ for every δ > 0;

▶ f2 is non decreasing ;

▶ f2(n+ 1)− f2(n) = o(f2(n)) as n → ∞.

Remark. First condition can be dropped for convergence in measure.
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Theorem (Berthé,Cesaratto,R.,Safe, 2021+)

Consider systems of partitions P1 and P2, with a.e. weight
functions f1 and f2. Then, under certain technical conditions

lim
n→∞

f2
(
Ln(x;P1,P2)

)
f1(n)

= 1 ,

for a.e. x.

The conditions are:

▶
∑

e−δf1(n) < ∞ for every δ > 0;

▶ f2 is non decreasing ;

▶ f2(n+ 1)− f2(n) = o(f2(n)) as n → ∞.

Remark. First condition can be dropped for convergence in measure.

13 / 28



Discussion: conditions of our main result
We recall the conditions:

(a)
∑

e−δf1(n) < ∞ for every δ > 0;

(b) f2 is non decreasing ;

(c) f2(n+ 1)− f2(n) = o(f2(n)) as n → ∞.

Intuitively, the first condition is the most constraining one:

▶ Condition (b) reflects the fact that P2 is refining ;

▶ Condition (c) means that f2(n+ 1) ∼ f2(n) ;

▶ Condition (a) tells us that f1(n) grows not too slowly

Important remarks

– Condition (a) not satisfied when f1(n) = log n,
– Condition (a) satisfied for f1(n) ≥ (log n)2.
– Condition (c) not satisfied when f2(n) = exp(n),

– Condition (c) is satisfied when f2(n) = exp(
√
n).
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Discussion: conditions of our main result

Example: appropriate output partitions P2

Subexponential weight functions of the form

f2(n) = exp(g(n)) ,

with g′(t) ↘ 0.

Example: appropriate input partitions P1

Superlogarithmic weight functions

f1(n) = (log n) · g(n) ,

with g(t) → ∞.

Note. For convergence in measure the conditions on the input partitions

can be dropped.
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Two natural zero entropy sources with weight

Farey partition (Sturm source) and Stern-Brocot partition built by
splitting intervals at mediant

mediant(a/b, c/d) := (a+ b)/(c+ d) .

Farey partition Fn:

▶ Base case: F0 = {[0, 1]}.
▶ Building Fn:

split
[
a
b ,

c
d

]
∈ Fn−1,

if b+ d ≤ n+ 1.

Stern-Brocot partition SBn:

▶ Base case: SB0 = {[0, 1]}.
▶ Building SBn:

split
[
a
b ,

c
d

]
∈ SBn−1 always.
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Farey partition

Farey partition Fn:

▶ Base case: F0 = {[0, 1]}.
▶ Building Fn: split

[
a
b ,

c
d

]
∈ Fn−1 at mediant a+c

b+d ,if b+ d ≤ n+ 1.

F0 : 0/1 1/1

F1 : 1/2

F2 : 1/3 2/3

F3 : 1/4 3/4

F4 : 1/5 2/5 3/5 4/5

Properties:

▶ Fk determines char. Sturmian word up to (k − 1)-th symbol.

▶ The end-points Fk are exactly {a
b ∈ Q : 0 ≤ a ≤ b ≤ k + 1}.

▶ Small number: Θ(k2) intervals in Fk

⇒ entropy 0.
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Weight of the Farey partition

Proposition

Farey partition is log-balanced a.e. with weight-function f(n) = 2 log n.

Farey intervals have comparable size almost everywhere:

Lemma

For almost every x, for large n ≥ n0(x)

1

n2
≤

∣∣IFn (x)
∣∣ ≤ (log n)(log log n)

n2
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Figure. Histogram of
interval sizes for n = 20.
1

202 = 0.0025, 1
20 = 0.05.
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Stern-Brocot partition

Stern-Brocot partition SBn:

▶ Base case: SB0 = {[0, 1]}.
▶ Building SBn: split

[
a
b ,

c
d

]
∈ SBn−1 always.

SB0 : 0/1 1/1

SB1 : 1/2

SB2 : 1/3 2/3

SB3 : 1/4 2/5 3/43/5

SB4 : 1/5 2/7 3/8 3/7 4/7 5/8 5/7 4/5

Associated to binary encoding of continued fractions:

[a1, a2, . . .] 7→ [0a1−1, 1, 0a2−1, 1, . . .]

which follows construction of CFs by mediants.
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Weight of the Stern-Brocot partition

Proposition

Stern-Brocot is log-balanced in measure with weight-function

fSB(n) =
π2

6

n

log n
.

Proposition

Stern-Brocot system of partitions is not log-balanced almost everywhere.

Proof sketch.

– Depth in Stern-Brocot strongly related to the growth to sum of
partial quotients

∑m
k=1 ak(x) .

– Sum behaves well in measure but erratic almost-everywhere.
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Consequences for our sources of zero-entropy

Corollary 1

Let P with h(P) > 0 and SB be the Stern-Brocot partition, then

Ln(x;P,SB) ∼ 6h(P)

π2
× n log n ,

in measure.

Corollary 2

Let P with h(P) > 0 and F be the Farey partition, then

logLn(x;P,F) ∼ h(P)

2
× n ,

almost everywhere.
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in measure.

Corollary 2

Let P with h(P) > 0 and F be the Farey partition, then

logLn(x;P,F) ∼ h(P)

2
× n ,

almost everywhere.

Proof.

For the input f1(n) = h(P)× n, for the output f2(m) = 2 logm.
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Second order term: continued fractions to Farey

Second order term might be irregular: big variability in Ln

Proposition

The Lochs’ index from continued fractions to Farey satisfies

2 logLn(x; CF ,F) = h(CF)× n+ cZn(x) ·
√
n+O (1) ,

where c > 0 and Zn ⇒ N(0, 1).

Recall. fCF (n) = h(CF)× n, and fF (m) = 2 logm.

Proof.

Find specific formula for Ln in this case, then use CLT for log qk(x).
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A “non-example”: Farey to continued fractions

Recall. f1(n) = 2 log n not valid weight function a.e. for input P1.

Proposition

For the Farey F and the Continued Fraction CF systems of partitions:

lim
n→∞

Ln(x;F , CF)

log n
=

12 log 2

π2
,

for almost every x.

▶ Follows from characterization of Ln for the given sources.

▶ Main Theorem only gives this limit in measure
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Recall: main result

Theorem (Berthé,Cesaratto,R.,Safe, 2021+)

Consider systems of partitions P1 and P2, with a.e. weight
functions f1 and f2. Then, under certain technical conditions

lim
n→∞

f2
(
Ln(x;P1,P2)

)
f1(n)

= 1 ,

for a.e. x.

The conditions are:

▶
∑

e−δf1(n) < ∞ for every δ > 0;

▶ f2 is non decreasing ;

▶ f2(m+ 1)− f2(m) = o(f2(m)) as m → ∞.

Intuition: m = Ln satisfies |IP2

m (x)| ≈ |IP1

n (x)| up to log-terms.

⇒ Formal proof separated into two parts: upper-limit and lower-limit.
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Proof-sketch: upper-limit

Upper-limit requires almost no conditions at all:

Lemma

Let P1 and P2 be a.e. log-balanced with weights f1 and f2
respectively. If f2 is non-decreasing

lim sup
n→∞

f2(Ln(x;P1,P2))

f1(n)
≤ 1 a.e.

Proof-sketch for f2 strictly increasing.

Fix ε > 0. Consider m > f−1
2 ((1 + ε)× f1(n)), then

− log |IP
2

m (x)| ∼ f2(m) ≥ (1 + ε)× f1(n) ,

while − log |IP1

n (x)| ∼ f1(n) . Thus I
P1

n (x) too large for IP
2

m (x).
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Upper-limit: a funny-looking corollary

Corollary

Let P be a.e. log-balanced with weight f . If f is non-decreasing

lim
n→∞

f(Ln(x;P,P))

f(n)
= 1 a.e.

For zero-entropy sources, such as Sturmian words (Farey partition):

– knowing n digits allows us to deduce Ln(x;P,P) ≥ n,
– equality need not hold ! maybe In+1(x) = In(x)
– weight function limits number of digits deduced.

Proof.

We know the upper-limit works. Lower-limit follows from

n ≤ Ln(x;P,P) .
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Proof-sketch: lower-limit

Lower-limit requires all of the conditions:

Lemma

Let P1 and P2 be a.e. log-balanced with weights f1 and f2
respectively, satisfying the conditions in the statement of the
Theorem, then

1 ≤ lim inf
n→∞

f2(Ln(x;P1,P2))

f1(n)
a.e.

Proof techniques: covering argument + Borel-Cantelli.
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Proof-sketch: lower-limit
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Conclusions and further work

We have introduced the log-balance partitions P with weight f

− log |IPn (x)| ∼ f(n) , a.e. or in measure

⊛ Weight function intervenes naturally in change of basis

⇒ adapted renormalization of the depths.

⊛ Our results now apply to sources with zero or infinite entropy.

⊛ We discussed zero-entropy sources from Number Theory

⇒ log-balanced, almost everywhere or just in measure.

Questions and further work

1. Obtain a general existence result for the weight ?

2. Are the hypotheses necessary ?
⇒ Limit applies for F → CF even though fF (n) = 2 log n

3. Results on average ?
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Thank you!
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