
Generating a random variable by coin tossing

Pablo Rotondo

March 4, 2017

1 Coin tossing

Suppose we are given a sequence of independent fair bits X1, X2, X3, . . . (meaning Xi

take 0 and 1 with probabily 1/2) we want to produce with them a discrete random
variable Y that takes the values {1, . . . , k} with probabilities p1, . . . , pk > 0. The
objective, of course, is to do this using the least possible number of bits.

Let us note that if we consider X = 0.X1X2X3 . . . in binary, this variable is uniformly
distributed in [0, 1]. The usual way to produce Y given a number X uniform in [0, 1]
is to consider the intervals I1 = [0, p1), I2 = [p1, p1 + p2), . . . , In = [p1 + . . .+ pn−1, 1)
and declare Y = j when X ∈ Ij. Of course, knowing whether X ∈ Ij or not, takes
a few bits from X1, X2, Indeed, having seen k digits, the only thing we know is
that X ∈ [X1 . . . Xk, X1 . . . Xk + 2−k].

1.1 Uniform distribution UN ∼ (1/N, . . . , 1/N)

The case of the uniform distribution is particularly interesting; it is indeed one of the
most common distributions one might come across, but we claim that its study shows
some interesting patterns too.

Algorithm 1. We begin with a simplified version that is slightly wasteful.

The idea is that we stop only when [0.x1 . . . xk, 0.x1 . . . xk + 2−k] is completely con-
tained in one of the intervals [0, 1/N), [1/N, 2/N), . . . , [1− 1/N, 1].

Why is this wasteful? Well, the probability of the resulting x = 0.x1x2 . . . being a
dyadic number A

2B
is 0, so we could directly stop when

(0.x1 . . . xk, 0.x1 . . . xk + 2−k) ⊂ Im ,

1

0 0.2 0.4 0.6 0.8 1
x=

{
log2(N− 1)

}
1.5

1.6

1.7

1.8

1.9

2

[T]− log2N

Algorithm 2
Algorithm 1
R(x)

Figure 1: Experimental redundancy for j = 9. Algorithm 1 is the “wasteful algo-
rithm”, while R(x) is the limit period for the redundancy.

thus neglecting the borders. This obviously improves the performance in cases like
N = 2k, in which we end up stopping after exactly k steps. The analysis of the
algorithm also gets more interesting as we shall see afterwards.

See the corresponding code for our first (and wasteful) algorithm in Figure 2.

To start let us recall that
E[T] =

∑
k≥0

P(T > k) ,

which simplifies the computation of E[T], because telling whether we have to continue
is easy: if there is a number of the form m/N in [0.X1 . . . Xk, 0.X1 . . . Xk+1/2k], then
we must conclude that T > k. This is so because m/N constitutes the border between

two intervals Im−1 =
(
m−1
N
, m
N

]
and Im =

(
m
N
, m+1

N

]
whenever m ∈ {1, . . . , N − 1}.

For 2−k > 1/N , it is obviously true that [0.x1 . . . xk, 0.x1 . . . xk + 1/2k] contains a
number of the form m/N with m < N , that is not 0.x1 . . . xk. Indeed, notice that
0.x1 . . . xk < 1− 1/N .

If N = 2k then we observe that we may only stop if [0.x1 . . . xk, 0.x1 . . . xk + 1/2k] is
[1− 2−k, 1], hence in this case P(T > k) = N−1

2k
.

Assume now that 2−k < 1/N , then there is exactly one number of the form 0.x1 . . . xk

in the interval
[
m
N
− 2−k, m

N

)
, which is given by

2

x = 0

l = 0

while (true) :

x += reveal_bit () / 2^k

while (I[l+1] <= x) :

l += 1

if (x + 1/2^k < I[l+1] or I[l+1] == 1) :

return k

k += 1

Figure 2: Algorithm 1. Here I[m] = m/N = p1 + . . .+ pm.

0.x1 . . . xk =
1

2k

(⌈
2km

N

⌉
− 1

)
.

The set of numbers in [0, 1] starting with those exact first k digits is[
1

2k

(⌈
2km

N

⌉
− 1

)
,

1

2k

⌈
2km

N

⌉)
,

therefore we conclude that

{x ∈ [0, 1] : T (x) > k} =
N−1⋃
m=1

[
1

2k

(⌈
2km

N

⌉
− 1

)
,

1

2k

⌈
2km

N

⌉]
.

Since 2−k < 1/N each term of the union is disjoint and so

P (T > k) =
N − 1

2k
,

where {·} denotes the fractional part.

Therefore

E[T] = 1 + blog2(N − 1)c+
∑

k:N≤2k

(
N − 1

2k

)
= 1 + blog2(N − 1)c+

N − 1

2blog2(N−1)c
.

In all we deduce that the redundancy E[T]−H(Y) satisfies

R(x) = 2x − x+ 1− log2

(
1 + 1

N−1

)
,

where x = {log2(N − 1)}, where {·} denotes the fractional part.

3

0 0.2 0.4 0.6 0.8 1

1.5

1.6

1.7

1.8

1.9

2

Figure 3: Experimental redundancy for j = 9.

Algorithm 2. In our second algorithm we stop as soon as (0.x1 . . . xk, 0.x1 . . . xk +
2−k) ⊂ Ij for some j = 1, . . . , N .

In this case we observe that the difference occurs when 0.x1 . . . xk + 2−k = m/N for
some 1 ≤ m ≤ n− 1. Of course 0.x1 . . . xk + 2−k = A/2B for some integers A,B > 0,
with A odd.

This never happens when N is odd, therefore the expected value remains the same
when N is odd. Now assume N = 2νd where d is odd. Then m = 2ν−BdA and since
A and d are odd we must have B ≤ ν and A < 2B. Now given 0 < A/2B < 1,
what is the smallest k for which 0.x1 . . . xk + 2−k = A/2B occurs? Let us remark
that, since 0.x1 . . . xk + 2−k < 1, all of the digits x1, . . . , xk cannot equal 1, therefore
0.x1 . . . xk + 2−k can be reduced to a number of the form 0.y1 . . . yk with k digits. It
follows then that k = B and that m/N = A/2B occurs as a right border for k = B−1.
Observe that 2B−1 < 2ν ≤ N , hence, in fact, this happens during the phase in which
1/N < 2−k and the intervals (0.x1 . . . xk, 0.x1 . . . xk+2−k) are longer than the intervals
[m/N, (m+ 1)/N], therefore once we get to the phase 1/N ≥ 2−k, all of the possible
dyadics are already available.

Fixed 1 ≤ B ≤ ν there are 2B − 2B−1 choices for our odd A (if we allow for the
possibility of m/N = 1, whihc we have to discount anyway). Hence in all we can
produce 2ν dyadics as a right-border.

4

Therefore

E[T] = 1 + blog2(N − 1)c+
∑

k:N≤2k

(
N − 2ν

2k

)
= 1 + blog2(N − 1)c+

N − 2ν

2blog2(N−1)c
.

In all we deduce that the redundancy E[T]−H(Y) satisfies

R(x) = 2x − x+ 1− 2ν(N) − 1

N − 1
2x − log2

(
1 + 1

N−1

)
,

where x = {log2(N − 1)}, where {·} denotes the fractional part and ν(N) is the
greatest t such that 2t divides N .

1.2 Generic distribution

Algorithm 1 for a generic Y . In this case we have to work with each individual
right-border P (j) := p1 + . . .+pj. As long as pj ≤ 2−k, all of the points in x ∈ [P (j−
1), P (j)) will produce a truncation 0.x1 . . . xk that satisfies [0.x1 . . . xk, 0.x1 . . . xk +
2−k] 6⊂ [P (j − 1), P (j)) , thus we will not have stopped. This accounts for a term
pj (1 + blog2 (1/pj)c) in

∑
k≥0 P(T > k), for each j ≤ N (even for j = N).

In particular this means that

H(Y) =
N∑
j=1

pj log2 (1/pj) ≤
N∑
j=1

pj (1 + blog2 (1/pj)c) ≤ E[T] .

The other cases are counted in (not necessarily disjoint from the previous count!)

Uk(p) :=
N−1⋃
m=1,

2k>1/pm

[
1

2k
(⌈

2kP (m)
⌉
− 1
)
,

1

2k
⌈
2kP (m)

⌉]
,

which has measure

µk(p) :=
#{m ∈ {1, . . . , N − 1} : 2k > 1/pm}

2k
.

Strictly speaking we should count the difference

|Uk(p) \ Vk(p)| , Vk(p) :=
N⋃

m=1,

2k≤1/pm

[
P (m− 1), P (m)

]
.

5

We prove the bound ∑
k

µk(p) ≤ 2 .

Indeed, observe that ∑
k

µk(p) =
∑
k

∑
m<N :pm>

1

2k

1

2k

and reverse the order of summation to get∑
k

µk(p) =
∑
m<N

∑
k:pm>

1

2k

1

2k
=
∑
m<N

1

2blog2(1/pm)c ≤ 2
∑
m

pm = 2 .

In general this means that

E[T] ≤ 1 +
N∑
j=1

pjblog2(1/pj)c+
∑

1≤m<N

1

2blog2(1/pm)c , (1)

and in particular
E[T] ≤ H(Y) + 3 .

Lemma 1 Fix p ∈ (0, 1), then

pblog2(1/p)c+
1

2blog2(1/p)c
≤ p log2(1/p) + p

Proof: Write
log2(1/p) = blog2(1/p)c+ ε ,

where of course ε ∈ [0, 1). Then

pblog2(1/p)c+
1

2blog2(1/p)c
= p(log2(1/p)− ε) + p2ε

and then the inequality 2ε ≤ 1 + ε, valid for ε ∈ [0, 1], proves the result. �

Comment. To prove that 2ε ≤ 1 + ε for ε ∈ [0, 1], observe that the function f(x) =
1 + x− 2x is concave and f(0) = f(1) = 0.

As a corollary we get the following Theorem

Theorem 2 Let T be the number of bits it takes to decide to which interval Ij the
number X belongs. Then we have

H(Y) ≤ E[T] ≤ H(Y) + 2 , (2)

where H(Y) =
∑k

j=1 pj log2(1/pj) is called the entropy of Y .

Furthermore, the +2 in (2) is tight by our example with the uniform distribution.

6

0.2 0.4 0.6 0.8 1
ε

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f(ε)

Figure 4: The function f(ε) = 1 + ε− 2ε.

Concluding remarks. I got the inspiration for this post from reading [1], chapter
5, where the optimal algorithm for producing a random variable from fair coin tosses
is described. I wondered, usually when working with probabilities one uses the pro-
cedure that I explained in the post, which more or less corresponds to the so called
Inversion method, so how far is it from the optimum? In this post I have proved that
it is not that far from being optimal actually. In [1] it is proved that the optimal
procedure satisfies the same bounds for the expected value H(Y) ≤ · ≤ H(Y) + 2,
but it is not shown that the inequality on the RHS is tight for the optimal procedure.

References

[1] Thomas M. Cover, Joy A. Thomas, Elements of Information Theory. Wiley Series
in Telecommunications and Signal Processing, Second Edition, 2006. 7

7

	Coin tossing
	Uniform distribution UN(1/N,…,1/N)
	Generic distribution

